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ABSTRACT

In this paper we analyze the performance of random beamforming
schemes in a multi-user Gaussian broadcast channel utilizing SINR
feedback. For generality, the receivers are allowed to have multiple
receive antennas. The first scheme analyzed allows each receiver
to feed back the largest SINR it observes for each transmit beam.
The distribution function of the maximum SINR is derived and is
noted to differ from previous work. In an effort to further reduce
feedback, a scheme where each user feeds back the maximum SINR
observed over its receive antennas and transmit beams. Using the
Fréchet bounds and properties of chi-squared random variables, the
throughput of this system is bounded and empirically shown to ap-
proach the performance of the previous scheme as the number of
users increases.

Index Terms:: multi-user MIMO, broadcast channel, random
beamforming, LMMSE receivers

1. INTRODUCTION

The users in a broadcast channel experience varying levels of chan-
nel quality. For high throughput, it is useful for the transmitter to
be fully aware of the channel to all the users. This represents a
large amount of information that must be known at the transmit-
ter. A mechanism by which the transmitter is aware of the channel
state information is for each user to feed back the observed channel.
The questions that concerns this paper are how to reduce the amount
of feedback and the tradeoff between reduced feedback and perfor-
mance. In this work, the random beamforming scheme suggested
in [1] is considered. Because the throughput is a function of SINR,
if each user sends back the SINR it experiences for each transmit
beam, then the transmitter sends to the users that are currently expe-
riencing the best channels for each beam. One possible scheme is to
view each antenna in the system as an individual user and select the
best antennsas. This scheme was utilized in [1].

This paper examines a scheme that further reduce the feedback
information. A feedback scheme is proposed where each user sends
back the maximum SINR experienced across all the receive antennas
and across all the transmitted beams. Compared to viewing each
antenna as an individual user, this scheme reduces the number of
SINR values fed back to the transmitter per user.
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The paper is organized as follows. In Section 2, the system
model and previous work is described. A new SINR distribution is
derived. In Section 3, a reduced feedback scheme is analyzed where
the receiver feeds back only the maximum observed SINR across
receive antennas and transmit beams. Section 4 analyzes the asymp-
totic performance of the feedback schemes and Section 5 concludes
the paper.

2. SYSTEM MODEL AND BACKGROUND

In this section the system model used to analyze the problem and
previous work found in [1] are discussed. The results found in [1]
will be built upon in the latter parts of this paper.

2.1. System Model

A block fading channel model is assumed for the Gaussian broadcast
channel. The transmitter has M transmit antennas and there are n
receivers, each with NV receive antennas. It is further assumed that
n>> Mand N < M. Lets(t) € C™*" be the transmitted vector
of symbols at time slot ¢ and y; (t) € CV*! be the received symbols
at the ‘" user at time slot . The following model is used for the
input-output relationship between the transmitter and the ‘" user:

vi(t) = /piHis(t) + wi(t), i=1,...,n. (1)

H; € CV*M is the complex channel matrix which is assumed to be
known at the receiver, w; € C*! is the white additive noise, and
the elements of H; and w; are i.i.d. complex Gaussians with zero
mean and unit variance as defined by Edelman ([5]). The transmit
power is chosen to be M, i.e. E{s*s} = M, the SNR at the receiver
is E{pi|His|2} = Mp; and p; is the SNR of the it" user. It is
assumed that p; = p Vi.

2.2. Background

The random beamforming scheme developed in [1] forms the basis
of this work. The key elements of this work are now described and
expanded upon.

2.2.1. SINR Distribution

The transmission scheme, as developed in [1], involves generating
M random orthonormal vectors ¢, € R form = 1,..., M,
where ¢, are isotropically distributed in R™ . Let s,,, (¢) be the m'"
transmit symbol at time ¢, then the total transmit signal at time slot ¢
is given by

St) = dm(t)sm(t). @)
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The received signal at the " user is given by

Yi(t) = Z Hi(t)hm (t)sm (t) + Wi(t). 3)

Each receive antenna at each user is assumed to measure the SINR
for each of the M transmitted beams and the maximum of the ob-
served SINR values is fed back leading to the use of order statistics.

Assuming that the i** user knows the quantity H;(t)¢m (t), from
Equatlon (3) the SINR of the j" receive antenna of the i‘" user for
the m*" transmit beam is computed by the following equation:

_ |Hij (8)pm (8)* .
% + Ek;ﬁnl ‘Hi,j(t)¢k(t)‘2

SINR; jm “)

H; ; is the §*" row of the i*" user’s channel matrix. It is well known
that the numerator in Equation (4) is distributed as a x*(2) random
variable and the denominator as a x2(2(M — 1)) random variable.
The density of the SINR is given in [1]

c+2(M —

D,
21 + )M

fo(x) = (Le’% + : ) w(z) (5)

2(1 4+ )M
where, in our case, ¢ = 2. From now on, for notational simplicity,
the u(z) will dropped from the distribution and density expressions
with the understanding that all the random variables of interest are
nonnegative.

The distribution function, required for the order statistics, is
given by the integration of the density in Equation (5) and yields
Equation (6) at the top of the next page, where o = § and Fi(x) =

f * dt The details of this calculation are omltted for brevity.
Thls dlStI‘lbutlon function is different from that stated in [1]. To com-
pare and verify these results, Figure 1 shows a plot of the distribution
in [1], a plot of the distribution Fs(x), and a plot of the numerical
integration of the density in Equation (5). Because Fs(x) differs
from the work in [1], in order for the results derived in [1] to hold,
the asymptotic properties that held for the distribution in [1] must be
shown to hold for Fi(x) derived above. Fortunately the properties
hold and will be shown later in this paper.

2.2.2. Scheduling Scheme

Viewing each antenna as a separate user, the following approxima-
tion was shown in [1]:

M
E { Z log (1 +,_max SINRi,m) }
m=1
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The approximation sign is required because there is a small proba-
bility that the same antenna is the best for multiple transmit beams.
To find the approximate rate requires the use of order statistics.

The distribution of the maximum SINR for a given beam is given
by classical order statistics [2], [3] and is
Frax (x) = [F.s (x)}nN 5 (8)

where F(x) is the CDF of the SINR. This equation can be used be-
cause the SINR values across antennas for a specific transmit beam
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Fig. 1. SINR CDFs as measured at the receive antennas, SNR
=0dB

are independent and marginally are identically distributed. Feeding
back only the largest SINR value for each transmit beam yields nM
total SINR values fedback in the system is considered in [1]. For fu-
ture reference, the feedback scheme of [1] is referred to as Scheme
A. The next question is how can the amount of feedback be reduced
even further?

3. FEEDING BACK THE LARGEST SINR PER USER

Each user in Scheme A is feeding back the M/ SINR values associ-
ated with the largest SINR measured for each beam. To further re-
duce the amount of feedback, what happens if each user only feeds
back the largest SINR value and the associated beam index? This
would reduce the total amount of system feedback from nM SINR
values to n SINR values and the corresponding n beam indices. This
feedback scheme is referred to as Scheme B. The analysis of this
scheme poses some difficulties that do not arise when considering
Scheme A. This section addresses these new difficulties and derives
bounds on the performance.

3.1. Analysis of Scheme B

Although Scheme B reduces the amount of feedback by a factor of
M compared to Scheme A, it is suboptimal. This is due to the fact
that the best SINR values for a particular beam may not be fed back
due to the restriction that only one value can be sent back per user.
This restriction, however, removes the mechanism which led to the
approximation symbol in Equation (6). Although Scheme B may
be suboptimal, in the interest of reducing the feedback as much as
possible, this scheme is of interest.

The distribution of the SINR that is served by the transmitter is
fundamentally different for Scheme B for two reasons. The first dif-
ference is that in Scheme A, the maximum is taken for each beam
and the marginal distributions of the SINR are i.i.d. across receive
antennas. However, the SINR values at a particular receive antenna
for different transmit beams are coupled. To see this, fix the antenna
at a particular user and vary the beam index. Let |H; ; () ¢m (1)|* =
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X,» and ¢ = 2. Then the SINR values at the receive antenna are

P
C+Zf;1 X C+§’:;M . The SINRs are coupled by the
appearance of the numerator term of a particular SINR value ap-
pearing in the denominator of all the other SINR values. Because
the SINR values are not independent, the order statistics used earlier
cannot be applied. The second difference is that in Scheme B the
number of SINR values to maximize over at the transmitter for each
beam is a random quantity. These fundamental differences will now
be addressed.

given by

3.1.1. Bounding the Joint Distribution of the SINRs

Deriving the joint distribution of the SINRs for the transmit beams
at a particular receive antenna is challenging. Rather than worry-
ing about the explicit joint distribution, the distribution function is
bounded and order statistics are applied to the bounds. The first
bound of interest is due to Fréchet and is stated below.

Theorem 1. ([3], The Fréchet Bounds) Let F'(X) be an m-dimensional
distribution function with marginals F;(x),1 < j < m. Then, for
all x1,x2,...

max <0
)

All the marginals are the same and are given by Fs(x). So for
the maximum order statistic, the Fréchet Bound simplifies to

71:771

D Fj(a) —mA+1
=1

) < F (21,22, .., Tm)

< min (Fi(z1), ..., Fm (Tm))

max (0, M (Fs(x) — 1)+ 1) < F(z,...,x) < Fs(x),

where F(x, ...
SINR;;1,...

,x) is the joint distribution on
,SINR; j a evaluated at  for each argument.

Upper bounding the distribution function by F(x) is too loose.
A tighter bound can be found in certain situations.

Theorem 2. In the high and low SNR regime,

Pr(SINRi ;1 <,...,SINR; jm < x) < [Fs(z)]™

This also holds as the number of transmit antennas grows large for
all SNR.

Proof. In the low SNR regime, the 2/p term in the denominator of
Equation (4) dominates, so all the terms look like independent chi-
squared random variables over the noise power. In this case, the
joint trivially factorizes into the product of the marginals by inde-
pendence. Note that

)

.

is the same probability as above, and as M grows large, by the law of
large numbers, the denominator in Equation (4) becomes constant,

SINR <

SINR <

Ty,

(MV—1) (M —1) —1) (—1)

so the joint factors into the product of the marginals. For the high
SNR regime, the summation term in Equation (4) dominates and by
a change of variable, we can look at the equivalent joint distribution

Pr ( Xn < m’)

" S
where the X are the chi-squared numerators and S,, = > .7
Then the < S— are beta distributed and the joint distribution is D1r1ch-
let, which is shown in [8],[9] to be less than the product of the beta
distributed marginals. O

X
S—:<m

A general proof for all SNR has not been found, but it is conjec-
tured from simulation results that it holds for all SNR. Applying this
property and the lower Fréchet Bound yields

[max (0, M (Fs(z) — 1) + 1))V

[F(SINRi 1 <,...,SINR; ju < z)]N < [Fso(x)]"™. (10)

Having bound the joint distribution, the maximum order statistic of
a random number of observations is analyzed.

3.1.2. Order Statistics Over a Random Number of Observations

If each user feeds back the maximum observed SINR and the beam
index that produced it, then the transmitter receives n. SINR values
and n beam indices over which to maximize. The number of SINR
values to maximize over for a particular beam is, however, a random
number. Because of the system model adopted, each beam has an
equal probability of being the one that produced the maximum at
any given user. The joint distribution on the number of SINR values
fed back for each beam can then be viewed as a multinomial distri-
bution where the probability of each beam being selected is =-. The
distribution of the order statistic of the maximum SINR is a dlstrlbu-
tion function raised to a power that is a random variable. Marginally,
the selection of each beam is distributed binomially with probability
ﬁ. Averaging over the binomially distributed exponent applied to
the bounds in Equation (10) produces the bounds seen on the top of
the following page.

3.1.3. Throughput Analysis

Using integration by parts and Equation (6), the throughput of a
scheme is expressed as

R= ME{log(1+X)}—M/ —(1— F(z))dz. (13)

where X is drawn from the distribution of the scheme being used.
Numerical integration is very attractive since the closed form expres-
sion of the expectations in Equation (6) for the distributions derived
earlier are not known to the authors. Figure (2) shows the throughput
(or bounds on the throughput) as a function of the number of users.
Notice that Scheme A and the bounds for Scheme B (and thus the
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Fraey,.. () = max {0, é (M (Fy(z) — 1) + 1V ( " ) (;4) (1 - ;4) n} (11
Panaspper (&) = _O [F( )}N”“( ; ) (L) (1 - ;4>_ (12)

Throughput as a Function of the Number of Users
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Fig. 2. Throughput as a Function of Number of Users for
Different Schemes forM =5, N =2, SNR =10 dB

actual distribution) tend towards each other. As the number of users
in the system increases, it is expected that the maximum SINR for
each beam is distributed across users with high probability. When
the maximum SINR for each beam is distributed over users, Scheme
B captures the true maximum and the two schemes perform equiv-
alently. Also notice that the bounds for Scheme B tighten over the
number of users.

4. ASYMPTOTIC SCALING

Ultimately, the asymptotic performance of these schemes compared
with the optimal sum-rate capacity that is achieved via dirty paper
coding is of primary interest. In order to utilize the theorem in [1],
which shows that a scheme asymptotically achieves the same scaling
as the sum-rate capacity, the distributions for the schemes must be
shown to satisfy some additional properties. Used in the proof of the
optimal asymptotic scaling is a theorem due to Uzgoren ([13]) and a
corollary that is proved in the appendix of [1]. First, it must be shown
that Fs(x) satisfy the conditions of the theorem and the corollary,
which is shown to be true but omitted due to space constaints. With
the conditions satisfied, the following theorem is now restated:

Theorem 3. ([1]) Let M and p be fixed and N = 1. Then

i _— =
oo M loglogn
where R is the throughput of our scheme.

In the single receive antenna case, i.e. N = 1, the value of
M loglogn comes from the fact that the transmitter is selecting
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the maximum SINR from 7 values for each beam. For a single
receive antenna per user, it is known that the optimal sum-rate ca-
pacity scales as M loglogn, and so the scaling is optimal. For
Scheme A in the more general case where 1 < N < M, the se-
quence of random variables for each transmit beam seen at the trans-
mitter is x1, ..., TyN, thus the dominator in Theorem (4) becomes
M loglognN. The following corollary summarizes the more gen-
eral case.

Corollary 1. Let M, N < M, and p be fixed. Then for Scheme A,
the throughput satisfies

lim R 1
n—oco MloglognN ~—

It should briefly be noted that a scaling rate of M loglogn/N is
essentially the same rate as M loglogn since NNV is a constant that
inside the double logarithm becomes inconsequential in the limit as
n goes to infinity.

The denominator term in Theorem (3) is determined by the num-
ber of observations that the maximum is taken over. Scheme B feeds
back only the largest SINR measured at each user. The sequence
of random variables to be maximized over for each beam is then
z1,...,TMm;, where M; is the number of SINR values fed back for
the 7*" beam. This led to the binomial type expression of the max-
imum SINR. What is the scaling when the number of terms to be
maximized over is random?

It should be noted that when only the largest SINR at a user is fed
back, the maximum order statistic over the joint distribution is not
known, which led to bounding the joint CDF from above and from
below. It can be shown that both bounds in Equation (10) satisfy
the requirements for the results of Theorem (3) to hold. Because
the joint distribution is continuous and bounded point-wise by two
distributions which scale as Theorem (3), the joint distribution of the
maximums scales in the same manner.

Theorem (3) is concerned with the asymptotic scaling relative
to the sum-rate capacity. Using the weak law of large numbers, as
the number of users n grows, the number of values fed back for
each transmit beam converges to ﬁ In Scheme B let Y; ,, be the
sequence of random variables in n denoting the number of SINR
values fed back for the i*" beam in a system with n users. Let =
ﬁ be the probability that a particular transmit beam is selected. The
sequence of random variables Y; ,, are binomially distributed with
probability of success 6. Define X; ,, = YIT" Then this sequence
of random variables, by the central limit theorem, satisfies

1 1 1
(Xm - M) - N (0, 7 (1 - M)) (14)

lim /n

n—oo



Let o2 = ﬁ (1 — ]\—14) and define the function

g (x,0) = [F(x)]"V™?  Then by the Delta Method ([14])

vnlg(z,Xin) —g(z,0)] - N (O7 o? g (w,@)]?') (15)

in distribution. Plugging the values into this equation yields
[(Fu(@) M X — (Fu@)™] —

N (o, nM (1 _ %) [Fy(2)]2™Y N? (log (Fs(m)))Q) (16)

for a particular argument x. Because the distribution Fg(x) <1
for any finite argument, the variance of the above distribution tends
to zero as the number of users in the system increases. Therefore,
estimating any point of the distribution of the extreme order statistic
of the SINR where only the maximum SINR seen at each user is
fed back can be approximated by [F(z)]"". The exponent of this
limiting distribution implies the following corollary.

Corollary 2. The throughput of Scheme B for fixed M, N < M,
and p scales as M loglognN, or

lim
n—oo M loglognN ~—

The effect of having the number of users grow to infinity is
to provide more observations to take the maximum over. Even in
Scheme B where the feedback is restricted to solely one SINR value,
asymptotically in the number of users, the performance scales at the
same rate as Scheme A. Intuitively, the probability that a single user
is the best for multiple beams becomes smaller as the number of
users increases, as is shown in [1].

5. CONCLUSION

In this paper we considered the random beamforming scheme pro-
posed in [1]. The SINR distribution function, required for order
statistics, was derived and shown to differ from that in previous
work. To further reduce the amount of feedback in the system, each
user can feedback the maximum SINR across receive antennas and
transmit beams. The analysis of the joint distribution in this case be-
comes burdensome, causing us to resort to bounding techniques. In
addition to the difficulties caused by the complex joint distribution,
the transmitter takes the maximum over a random number of quanti-
ties, which leads to binomial averaging of the bounds applied to the
joint distribution. The difference in throughput of the two schemes
decreases as the number of users in the system increase.

Because the underlying SINR distribution is shown to differ from
that in [1], the asymptotic properties must be re-derived. It can be
shown that the same scaling laws found in [1] hold for the new dis-
tribution. The scaling law is also found for the reduced feedback
scheme.

6. REFERENCES

[1] M. Sharif, B. Hassibi, “On the Capacity of MIMO Broadcast
Channels With Partial Side Information,” IEEE Trans. Inf. The-
ory, vol. 41, no. 2, pp. 506 - 522, Feb. 2005.

732

(2]
(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

H. A. David, Order Statistics. New York: Wiley, 1970.

J. Galambos, The Asymptotic Theory of Extreme Order Statis-
tics. New York: Wiley, 1978.

D. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation. Cambridge: Cambridge University Press, 2005.

A. Edelman, “Eigenvalues and condition numbers of random
matrices,” Ph.D. dissertation, MIT, Cambridge, MA, 1989.

G. Caire and S. Shamai (Shitz), ”On the achievable throughput
of a multiantenna Gaussian broadcast channel,” IEEE Trans.
Inf. Theory, vol. 49, no. 8, pp. 1691-1706, Jul. 2003.

I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series,
and Products. London, U.K.: Academic, 1965.

K. Joag-Dev and F. Proschan, "Negative Association of Ran-
dom Variables with Applications,” The Annals of Statistics,
vol. 11, no. 1, pp. 286 - 295, Mar. 1983.

H.W. Block, T. H. Savits, and M. Shaked, ”"Some Concepts of
Negative Dependence,” The Annals of Probability, vol. 10, no.
3, pp. 765 - 722, 1982.

R. J. Muirhead, Aspects of Multivariate Statistical Theory.
New York: Wiley, 1982.

H. Gao and P. J. Smith, "Theoretical Reliability of MMSE Lin-
ear Diversity Combining in Rayleigh-Fading Additive Interfer-
ence Channels,” I[EEE Trans. on Comm., vol. 46, no. 5, pp. 666
- 672, May. 1998.

H. Gao and P. J. Smith, "Exact SINR Calculations for Opti-
mum Linear Combining in Wireless Systems,” Prob. in the
Eng. and Info. Sciences, vol. 12, pp. 261 - 281, 1998.

N. T. Uzgoren, "The asymptotic development of the distribu-
tion of the extreme values of a sample,” in Studies in Mathe-
matics and Mechanics Presented to Richard von Mises. New

york: Academic, 1954, pp. 346-353.

G. Casella and R. L. Berger, Statistical Inference. New York:
Duxbury Press, 2001.



