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ABSTRACT

To utilize the multi-user diversity in broadcast channels, the channel
state information (CSI) of each user must be known at the transmit-
ter. To reduce the overhead of CSI feedback under random beam-
forming the question of which receivers should feed back their CSI
is investigated. Using the closed form expression for the SINR dis-
tribution, thresholding functions T (n) are designed to meet specific
design criterion as a function of the number of receivers. Specifi-
cally three design criterion are proposed. The asymptotic limits of
the successful thresholding functions T (n) are found. If T (n) scales
slower than logn, asymptotically no performance is lost. If T (n)
scales faster than logn, all multi-user diversity is lost.

Index Terms:: multi-user MIMO, broadcast channel, random beam-
forming, limited feedback, thresholding

1. INTRODUCTION

The multi-user broadcast channel has been the subject of intense
study for many years as it has numerous direct applications to mod-
ern technologies such as the cell phone downlink channel. Great
strides have been taken in characterizing the theoretical limits of the
broadcast channel, especially the vector Gaussian broadcast chan-
nel. Specifically there has been an explosion of work regarding the
sum-rate capacity of the vector Gaussian broadcast channel starting
with [1]. One of the greatest hindrances in achieving the theoretical
optimum is having complete CSI for all of the users in the multi-user
broadcast channel available at the transmitter. It is well known that
without CSI at the transmitter, the system cannot utilize multi-user
diversity, which is a significant benefit of multi-user systems. In or-
der to reap the benefits of the multi-user architecture, CSI feedback
from the receivers to the transmitter is essential.

The first steps towards thresholding feedback are in the works
[2, 3, 4] which consider one bit feedback schemes where a binary
decision is made as to whether or not the channel is in a good or bad
state for transmission. These works were later extended in [5], where
the feedback channel is used multiple times per coherence time to al-
low for refinement of the scheduling decision. The rate enhancement
due to additional feedback bits is analyzed in [6]. Additional work
along these lines can be found in [7] as well as an overview of feed-
back systems in general in [8].

This contribution addresses the question of which user should
feed back CSI under the random beamforming transmit scheme pro-
posed in [9] and extended in [10] in order to reduce CSI feedback.
Specifically, the goal of this work is to design thresholds such that
a user feeds back its observed SINR value if the value is above the
threshold and does not feed back if the SINR is below the threshold.
The design of the thresholds is addressed in two parts. The first part
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considers design of optimal thresholds as a function of the number of
users in the system under under three proposed performance metrics.
The second part analyzes the scaling rate of any successful threshold
asymptotically in the number of users.

The organization of the contribution is as follows: the system
model and random beamforming transmit scheme are discussed in
Section 2. Section 3 discusses the effects of thresholding on the
SINR distribution. Section 4 addresses the design of the threshold-
ing function with respect to certain performance metrics. Section
5 analyzes the asymptotic scaling rate of the thresholding function.
Finally, Section 6 summarizes the results of this contribution.

2. SYSTEM MODEL AND RANDOM BEAMFORMING

In this section the system model is described. Under the given sys-
tem model, the random beamforming technique first proposed in [9]
is outlined. The key implications of this work will be discussed.

2.1. System Model

A block fading channel model is assumed for the Gaussian broadcast
channel. The transmitter has M transmit antennas and there are n
receivers (users), each with a single receive antennas. It is assumed
that n � M which is typically the case in a cellular system. Let
s(t) ∈ CM×1 be the transmitted vector of symbols at time slot t
and yi(t) ∈ C be the received symbol at the ith user at time slot
t. Under the block fading assumption, the time slot t notation will
be suppressed with the understanding the channel is constant and
known during each scheduling epoch. The following model is used
for the input-output relationship between the transmitter and the ith

user:

yi =
√
ρih

H
i s+ wi, i = 1, . . . , n. (1)

hi ∈ CM is the complex channel vector which is assumed to be
known at the receiver, wi ∈ C is the complex white additive noise,
and the elements of h and wi are i.i.d. complex Gaussians with zero
mean and unit variance and the superscript H denotes the conju-
gate transpose. This is the standard Rayleigh fading model, where
the channel gain between every transmit-receive antenna pair is a
complex circularly symmetric normal random variable. The transmit
power is chosen to be M , i.e. E{s∗s} = M , so that the normalized
power per antenna is one. The signal-to-noise ratio (SNR) at the re-
ceiver is E{ρi|hHi s|2} = Mρi and ρi is the SNR of the ith user. It
is assumed that the network is homogeneous, thus ρi = ρ ∀i.

2.2. Random Beamforming

The random beamforming transmit scheme involves generating an
M dimensional random orthonormal basis from an isotropic distri-
bution, with basis vectors φm ∈ CM×1 for m = 1, . . . ,M . Let sm



be the mth transmit symbol, then the total transmit signal is given
by

s =

M∑
m=1

φmsm. (2)

The received signal at the ith user is given by

yi =

M∑
m=1

√
ρhHi φmsm + wi. (3)

Every receiver measures and feeds back the SINR for each of the M
transmit directions.The transmitter then schedules the users experi-
encing the largest SINR for each transmit direction.

It is assumed that the ith user knows the quantity hHi φm from
Equation 3 for each transmit direction. With this knowledge, the
SINR observed at the ith user for themth transmit direction is given
by the following equation:

SINRi,m =
|hHi φm(t)|2

2
ρ
+
∑
k 6=m |hHi φk(t)|2

. (4)

The orthonormal beamforming vectors and i.i.d. zero mean and unit
variance complex Gaussian elements of hi imply the numerator in
Equation 4 is distributed as a χ2(2) random variable and the denom-
inator is an independent χ2(2(M−1)) random variable. It is shown
in [9] that the distribution of the SINRs at the receive antennas is
given by

fSINR(x) =
e
− x
ρ

(1 + x)M

(
1

ρ
(1 + x) +M − 1

)
u(x), (5)

where u(x) is the unit step function. From now on, the u(x) will be
dropped from the SINR distribution and SINR density expressions
with the understanding that all the SINR random variables of interest
are nonnegative. Integrating the density in Equation 5 yields the
distribution function for the SINR random variables:

FSINR(x) = 1− e
− x
ρ

(1 + x)M−1
. (6)

The main result of [9] is that asymptotically random beamform-
ing has the optimal sum-rate throughput scaling. More specifically,
the sum-rate throughput of the random beamforming technique R
asymptotically scales at a rate of M log logn, which is the theoreti-
cal optimal scaling rate. This theorem is now stated:

Theorem 1. ([9]) Let M and ρ be fixed and N = 1. Then

lim
n→∞

R

M log log n
= 1 (7)

where R is the throughput of the random beamforming technique.

With the previous results now reviewed, the properties of the
distribution function can be used to ask questions about designing
thresholds to limit which users feed back CSI and the effects these
thresholds have on the system performance.

3. SINR DISTRIBUTION WITH THRESHOLDS

The effects of thresholding on the distribution function FSINR given
by Equation 6 must be understood in order to design a thresholds to
meet certain performance conditions. In [10], it is observed that that

Fig. 1. Uniform Distribution Truncated at xthreshold = 0.5

the threshold truncates the distribution function of the SINR values
fed back to the transmitter in the following manner:

F thresholdSINR (x) =

 FSINR(x) x ≥ xthreshold
FSINR (xthreshold) 0 ≤ x < xthreshold
0 x < 0

(8)
Equation 8 states that the probability mass less than the threshold
value xthreshold concentrates at zero, and this is the probability that
the user does not feed back. The mass concentrates at zero be-
cause this is the lowest possible value that the nonnegative SINR
random variables can attain. With this mapping, the values that do
not exceed the threshold do not affect the greedy scheduling decision
since they are assumed to be the smallest possible value. To gener-
alize the truncation from nonnegative random variables, let x1 =
inf {x : F (x) > 0} for an arbitrary distribution function F , i.e. the
left end point of the support of F . Thresholding an arbitrary distri-
bution function produces the following truncation:

F threshold(x) =

 F (x) x ≥ xthreshold
F (xthreshold) x1 ≤ x < xthreshold
0 x < x1

(9)
Figure 1 shows the truncation of the uniform distribution at
xthreshold = 0.5. The probability mass less than xthreshold = 0.5
maps to the left end point of the support, which in this case is x1 = 0.

Let X be a random variable drawn from a distribution function
F . Then the distribution function from Equation 9 corresponds to
the following random variable Y :

Y =

{
X X ≥ xthreshold
x1 X < xthreshold

(10)

From an engineering perspective, this formulation is motivated by
the following scenario. Let there be n users, where user i makes an
observation Xi drawn i.i.d. from F . Each user decides to send back
their observation Xi to the scheduler if it exceeds some threshold
xthreshold. The scheduler has the task of finding the maximum ob-
servation. The users that did not report their observations because
they did not exceed the threshold should not effect the decision of
finding the maximum. Thus if a user did not report a value, their
observation is assumed to be x1. By taking on the lowest possible



value, it cannot affect the task of finding the maximum value among
the users that do feed back, and this motivates Equation 10.

In [10], it is shown that any finite threshold does not affect the
asymptotic performance. The goal of this contribution is to reduce
CSI feedback by designing a threshold as a function of the number
of users, T (n), that meet specified performance goals.

4. THRESHOLDS FOR A FINITE NUMBER OF USERS

The design of an appropriate threshold depends on the performance
metrics that are to be optimized. This section discusses how to de-
sign the threshold for a system with n users to address the following
metrics:

1. What should the threshold be so that the probability that no
user feeds back information for any transmit beam is less than
some design parameter γoutage?

2. What should the threshold be so that on average only k users
feed back SINR information for every transmit beam?

3. What should the threshold be so that the rate loss compared to
the unthresholded system is less than some design parameter
Rloss?

The first question is motivated by the fact that for any threshold,
as long as one users feeds back SINR information for each transmit
beam, then the maximum SINR is conveyed at the transmitter. In the
event that the threshold is chosen so that no user feeds back SINR
information for a transmit beam, multi-user diversity is lost on that
beam, thus the probability that no user feeds back information needs
to be controlled. The design parameter γoutage is the ”multi-user
diversity outage probability”, which is the maximum proportion of
the time that the system is allowed to have no user feedback CSI in-
formation for any transmit direction. The second question considers
the design of the threshold to constrain the average number of users
feeding back. The final question considers designing the threshold
to trade off reducing sum-rate throughput to reduce the amount of
CSI feedback. The following subsections provide solutions to the
threshold design questions just raised.

4.1. Designing a Threshold under Outage Constraints

The first design criterion corresponds to each transmit beam having
fed back SINR information 1 − γoutage percent of the time. The
system is in multi-user diversity outage if at least one transmit beam
has no feedback information, and this situation should occur less
than γoutage percent of the time. The key to the analysis of designing
a threshold to meet this requirement is to recall from Equation 8 the
effect thresholding has on the underlying distribution function.

Since the SINR is always positive, if 0 ≤ SINR < xthreshold,
then the user does not feed back the SINR information for that par-
ticular transmit beam, and this happens with probability
FSINR(xthreshold). For a system with n users and M transmit
beams, let Yi,j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,M} be a Bernoulli
random variable indicating that user i feeds back SINR information
for transmit beam j. From the previous statement, Yi,j are i.i.d. with
the following distribution:

Pr [Yi,j = 1] = 1− Pr [Yi,j = 0]

= 1− FSINR (xthreshold) . (11)

Define the random variable Zj = Y1,j + · · · + Yn,j , which de-
notes the total number of users that feedback information for trans-
mit beam j. Since the Yi,j are i.i.d. for all i, Zj is a binomial
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Fig. 2. Threshold as a function of γoutage for M = 4 and ρ = 1

random variable, i.e. Zj ∼ B (n, 1− FSINR (xthreshold)). Out-
age occurs for transmit beam j when Zj = 0, and Pr [Zj = 0] =
(1 − (1 − FSINR(xthreshold)))n = (FSINR(xthreshold))

n. The
probability that the system is in outage is thus given by:

Pr[outage] = γoutage = 1− Pr[not in outage]
= 1− Pr [Z1 6= 0, . . . , ZN 6= 0]

= 1−
M∏
i=1

Pr [Zi 6= 0] = 1−
M∏
i=1

(1− Pr [Zi = 0])

= 1− (1− (FSINR(xthreshold))
n)M .

Therefore for a fixed number of users n, a fixed number of transmit
antennaM , and design parameter γoutage ∈ [0, 1], the threshold can
be determined:

γoutage = 1− (1− (FSINR(xthreshold))
n)M ⇒

T (n) = xthreshold = F−1
SINR

((
1− (1− γoutage)

1
M

) 1
n

)
(12)

where F−1
SINR is the inverse distribution function. The solution to the

inverse distribution function can be expressed in terms of Lambert
functions. An alternative solution to evaluating the inverse is to use
an iterative algorithm. Because the distribution function is a function
of a scalar and monotonic, iterative algorithms are well suited for the
computation of the inverse. Figure 2 shows the value of xthreshold
as a function of γoutage for varying numbers of users in the system.
As expected, for γoutage approaching zero, the threshold also has to
go to zero, and for γoutage approaching one, the threshold begins to
blow up. For larger numbers of users in the system, the threshold
can be set higher and achieve the same outage probability due to the
increased maximum order statistics.

In the unthresholded system, each receiver feeds back M SINR
values for a total of nM values in the system. With the thresh-
old given by Equation 12 and the probability given by Equation 11,
on average only nM (1− FSINR(xthreshold)) SINR values are fed
back, or an average reduction of nMFSINR(xthreshold) SINR val-
ues.
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Fig. 3. Threshold as a function of the Average Number of Users
Feeding Back for M = 4 and ρ = 1

4.2. Designing a Threshold Constraining the Average Number
of Users Feeding Back

Because the SINR information is distributed across geographically
separated receivers, it is impossible to design a threshold that can
guarantee that exactly k < n users feed back information for each
transmit beam without further sharing of information. The best one
can hope to do is use the statistical information about the chan-
nel metric, the observed SINR, to create a threshold that guaran-
tees on average only k users feed back. From Section 4.1 it is
known that the probability of feeding back is a Bernoulli random
variable, and the number of users feeding back for a particular trans-
mit beam is a binomial random variable with parameters n and 1 −
FSINR (xthreshold). With these observations, the design of the thresh-
old under the average number of users feeding back per transmit
beam metric is straightforward. Once again, let
Zj ∼ B (n, 1− FSINR (xthreshold)) be the number of users feed-
ing back for transmit beam j. Then

k = E [# of users feeding back for transmit beamj]
= E[Zj ] = n (1− FSINR (xthreshold))

⇒ T (n) = xthreshold = F−1
SINR

(
n− k
n

)
. (13)

Figure 3 shows the threshold as a function of the constraint on the
average number of users feeding back for varying number of users
in the system. As the average number of users allowed is increased,
the threshold decreases as expected to accommodate more users ex-
ceeding the threshold. When the average number of users equals the
number of users in the system, the threshold is equal to zero.

4.3. Designing a Threshold with Rate Loss Constraints

A third design constraint of interest is to select a threshold that bounds
the rate lost in the system as compared to the system without a
threshold. Let R be the throughput of the unthresholded system.
From [9, 10], it is known for the random beamforming scheme that

R can be expressed as

R ≈M
∫ ∞
0

1

1 + x
(1− (FSINR(x))

n) dx, (14)

where the approximation symbol becomes very accurate for a mod-
erate number of users in the system. Equation 14 is equivalent to
writing out the integral equation to evaluate

ME [log (1 + max {X1, . . . , Xn})] , (15)

where the Xi are drawn i.i.d. from FSINR. The exponent of n on
the distribution function is the effect of the maximum order statistics.

The sum-rate throughput of the thresholded system is more com-
plicated and consists of two parts: the rate when a transmit direction
receives CSI and the rate when no user feeds back information for a
transmit direction and thus a random user is scheduled on that beam-
forming vector. Analogous to Equation 14, the sum-rate throughput
of the thresholded system can be shown to be given by

Rthreshold ≈M
∫ ∞
0

1

1 + x
(1− Fthreshold(x)) dx, (16)

where

Fthreshold =

 FSINR(x)
n for x ∈ [xthreshold,∞)

FSINR(xthreshold)
n · Frandom(x)

for x ∈ [0, xthreshold)
(17)

and

Frandom(x) =
FSINR(x)

FSINR(xthreshold)
for x ∈ [0, xthreshold). (18)

Equation 17 reflects the two scenarios just described.
Let Rloss = R − Rthreshold ∈ [0, Rrandom] be the design pa-

rameter that quantifies the amount of rate that can be sacrificed in
order to reduce feedback. The upper bound on Rloss is Rrandom
since in the worse case scenario this throughput can be achieved by
randomly scheduling users. Since FSINR for this system is continu-
ous and monotonically increasing, Rloss is monotonic increasing as
a function of xthreshold and there exists one solution for xthreshold
that solves the above equation for Rloss. Rloss is a complicated
function of xthreshold, but due to its monotonicity, an iterative algo-
rithm can be used to find xthreshold to sufficient accuracy. Figure 4
shows the threshold as a function of the design parameterRloss. For
small values of Rloss, the larger the number of users, the higher the
threshold can be set and still achieve the same rate loss, which is ex-
pected since for a larger number of users, the probability of exceed-
ing the threshold increases. All the thresholds eventually approach
infinity as Rloss approaches the unthresholded sum-rate throughput
given by Equation 14.

5. THRESHOLDING ASYMPTOTICALLY IN THE
NUMBER OF USERS

In the previous section, the optimal thresholding function T (n) was
determined for three performance metrics. In this section, the ques-
tion analyzed is how fast can the thresholding function T (n) grow
as a function of the number of users and still have the thresholded
system achieve the same optimal asymptotic sum-rate scaling as the
non-thresholded system? The results on the scaling rate of success-
ful thresholding functions T (n) will now be summarized.

To briefly review some notation, a function f is said to be dom-
inated by g asymptotically if as n → ∞, eventually |f(n)| ≤
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Fig. 4. Threshold as a function of Rloss for M = 4 and ρ = 1

|g(n)| · ε for every ε > 0 and is denoted f(n) ∈ o(g(n)). Also,
f is said to asymptotically dominate g if as n → ∞, eventually
|f(n)| ≥ |g(n)| · ε for every ε > 0 and is denoted f(n) ∈ ω(g(n)).
Having established this notation, the main result on the sufficient
condition of the scaling rate of T (n) is now stated.

Theorem 2. Sufficient Scaling Condition Under the Rayleigh fad-
ing model and random beamforming scheme described in Section
2, if the thresholding function T (n) ∈ o(logn), then the sum-rate
throughput of the system satisfies R

M log logn
→ 1 .

Theorem 2 says that as long as T (n) grows slower than logn,
that asymptotically the sum-rate throughput of the thresholded sys-
tem still achieves the optimal sum-rate throughput scaling rate of
M log logn. The next question to ask is can the thresholding func-
tion T (n) grow too fast such that asymptotically no user exceeds the
threshold. This question is answered affirmatively in the following
theorem:

Theorem 3. Necessary Scaling Condition Let the SINR observed
at each user be distributed i.i.d. according to FSINR. Then if
T (n) ∈ ω(logn), asymptotically no user exceeds the threshold and
consequently all multi-user diversity is lost.

The results of Theorem 2 and 3 provide the limits of the asymp-
totic scaling rate of any successful thresholding function T (n). The
form of Theorem 1 and Equation 15 can portend these results. The-
orem 1 says the sum-rate scaling rate of random beamforming is
M log logn while the sum-rate throughput of random beamforming
is given by Equation 15, and thus one would expect asymptotically
E[max{X1, . . . Xn}] to roughly grow as logn. Informally, this is
why when T (n) ∈ o(logn) the asymptotic sum-rate scaling rate is
preserved, and when T (n) ∈ ω(logn) eventually the threshold is so
large no user exceeds it.

6. CONCLUSION

This paper addresses the question of which user should feed back
the observed SINR given statistical knowledge of the channel met-
ric. When every receiver feeds back their SINR information, it is

shown in [9] that random beamforming achieves the optimal sum-
rate throughput scaling. In [10], it is shown that any finite threshold
such that users experiencing SINRs below this threshold do not feed
back does not affect this optimal scaling rate. The questions raised
in this contribution discuss how the thresholds can be designed as
a function of the number of users in the system to achieve certain
performance metrics.

Using the statistics of the channel metric, thresholds for an n
user system under three different design criterion are found. Under
the first criterion, a threshold is designed to limit the probability that
no user in the system feeds back CSI information for any transmit
beam to be less than the design parameter γoutage. The second cri-
terion considers choosing a threshold such that on average only k out
of n users in the system feed back CSI information for each transmit
beam. Finally, a threshold is designed to limit the rate lost compared
to a random scheduling algorithm to be below a design parameter
Rloss.

Lastly, the question of how fast can the threshold grow yet still
exhibit the optimal scaling is considered. It is shown that any thresh-
olding function T (n) that grows slower than logn as a function of
the number of users n, i.e. T (n) ∈ o(logn), achieves the opti-
mal scaling rate. Conversely, any thresholding function T (n) ∈
ω(logn) causes the system to lose all multi-user diversity.
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