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ABSTRACT

In this paper we analyze the performance of random beam-

forming schemes in a multi-user Gaussian broadcast channel.

Each user will have N > 1 receive antennas allowing op-

timal combining to be performed. To notify the transmitter

of its current channel state, each user feeds back their SINR

after LMMSE combining. Two feedback schemes are an-

alyzed. The first scheme allows each user to feedback the

post-processed SINR for each of the random transmit beams.

To analyze this scheme, the distribution of the post-processed

SINR is found. The second scheme attempts to limit feedback

by allowing each user to feedback only the largest observed

post-processed SINR and the index of the associated trans-

mit beam. Using the Fréchet bounds, the throughput of the

reduce feedback scheme is bounded and shown to have the

same asymptotic scaling properties as the first scheme. Em-

pirically, it is observed that as the number of users in the sys-

tem increases, the reduced feedback scheme approaches the

throughput of the scheme without thresholding.

Index Terms:: multi-user MIMO, broadcast channel, ran-

dom beamforming, LMMSE receivers

1. INTRODUCTION

The users in a broadcast channel experience varying levels

of channel quality. In order to achieve the highest sum-rate

throughputs, the transmitter must be aware of the channels

that the end users are experiencing. A mechanism by which

the transmitter is aware of the channel state information is for

each user to feed back the observed channel. Because this

represents a large amount of information to feed back, the

questions that concern this paper are how to reduce feedback

and the tradeoff between reduced feedback and performance.

In this work, the random beamforming scheme suggested in

[1] is considered. Since each user is allowed multiple re-

ceive antennas, to increase the receive SINR, LMMSE re-

ceivers will be employed at each users. Because throughput is

a function of SINR, if each user feeds back the post-processed
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SINR for each transmit beam, then the transmitter can select

the users that are currently experiencing the best channels for

each transmit beam. This is in essence the scheme proposed

by [1] extended to LMMSE reception, and is the scheme con-

sidered in [2], which only considers the specific case of four

transmit antennas and two receive antennas per user.

This paper additionally examines a scheme that further

reduces the amount of feedback. Limiting each user to feed

back only the largest post-processed SINR value observed

amongst the beams and the beam index that generated it re-

duces the amount of feedback per user to a single SINR value

and a single beam index. This is in contrast to the first scheme

which allows a post-processed SINR value to be fed back for

each transmit beam per user.

The paper is organized as follows. In Section 2, the sys-

tem model is described. In Section 3 the scheme where each

user feeds back the post-processed SINR for each transmit

beam is analyzed. The distribution of the post-processed SINR

for a general number of transmit antennas and receive anten-

nas per user is derived. Section 4 analyzes a reduced feedback

scheme where the receiver feeds back only the maximum ob-

served post-processed SINR value and the associated beam

index. Section 5 concludes the paper.

2. SYSTEM MODEL

A block fading channel model is assumed for the Gaussian

broadcast channel. The transmitter has M transmit antennas

and there are n receivers, each with N > 1 receive anten-

nas. It is further assumed that n � M and N ≤ M . Let

s(t) ∈ C
M×1 be the transmitted vector of symbols at time

slot t and yi(t) ∈ C
N×1 be the received symbols at the ith

user at time slot t. The following model is used for the input-

output relationship between the transmitter and the ith user:

yi(t) =
√

ρiHis(t) + wi(t), i = 1, . . . , n. (1)

Hi ∈ C
N×M is the complex channel matrix which is assumed

to be known at the receiver, wi ∈ C
N×1 is the white additive

noise, and the elements of Hi and wi are i.i.d. complex, circu-

larly symmetric Gaussians with zero mean and unit variance.

The transmit power is chosen to be M, i.e. E{s∗s} = M ,

the SNR at the receiver is E{ρi|His|2} = Mρi and ρi is the

SNR of the ith user. It is assumed that ρi = ρ ∀i.
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The transmission scheme, as developed in [1], involves

generating M random orthonormal vectors φm for

m = 1, . . . , M , where φm are isotropically distributed. Let

sm(t) be the mth transmit symbol at time t, then the total

transmit signal at time slot t is given by

s(t) =
M∑

m=1

φm(t)sm(t). (2)

The received signal at the ith user is given by

yi(t) =
M∑

m=1

Hi(t)φm(t)sm(t) + wi(t). (3)

Since each user in the system has N > 1 receive antennas,
a more complex receiver structure can be utilized. It is known
that the optimal linear receiver is the linear MMSE receiver.
Assuming that the ith user knows the quantity Hi(t)φm(t) for
all m, using the system model defined in Equations (1) - (3),
the SINR after optimal combining for the ith user and the jth

transmit beam is given by

SINRi,j = φ∗
j H∗

i
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4Hi
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Hiφj (4)

where ∗ denotes conjugate transposition and I is the identity

matrix.

The two schemes considered in this paper depend upon

how much information is fed back to the transmitter. The first

scheme considers the scenario where each user feeds back

all the observed post-processed SINR values, that is user i
feeds back SINRi,j for j = 1, . . . , m from Equation (4).

Call this scheme Scheme A. The second scheme considers

the scenario where each user feeds back only the largest of

the observed post-processed SINR values and the associated

beam index. That is, user i feeds back maxj SINRi,j and

argmaxjSINRi,j . Call this scheme Scheme B. The through-

put and asymptotic scaling of these two schemes are analyzed

in the remainder of this paper.

3. FEEDING BACK THE SINR PER BEAM

First consider Scheme A. The following approximation to the

throughput was shown in [1]:

R ≈ E

{
M∑

m=1

log
(

1 + max
i=1,...,n

SINRi,m

)}

= ME

{
log

(
1 + max

i=1,...,n
SINRi,m

)}
(5)

The approximation sign is required because there is a small

probability, when there are many users, that the same user

is the best for multiple transmit beams. To find the approxi-

mate rate requires knowledge of the distribution of the post-

processed SINR and the use of order statistics.

The distribution of the post-processed SINR is a special

case of the work done in [3] and [4]. Applying the specific

system model to these works yields the following theorem.

Theorem 1. The distribution function of the post-processing
SINR given by Equation (4) for the system defined in Equa-
tions (1) - (3) is given by

FMMSE(x) =

1−
exp

“
−x

ρ

”
(1 + x)M−1

NX
i=1

1 +
PN−i

j=1

„
M − 1

j

«
xj

(i− 1)!

„
x

ρ

«i−1

.

The distribution function for the interference limited regime

is analyzed in [5], while the SINR distribution is derived for

the case M = 4 and N = 2 in [2]. Even with closed form ex-

pression for the post-processed SINR distribution, no closed

form solution to Equation (5) is known to the authors. The

rate can be approximated by using numerical methods and

the distribution given by Theorem (1).

Along the lines of [1] and [2], the asymptotic scaling of

the rate of Scheme A as the number of users goes to infinity

is of interest. The first step in finding the asymptotic scaling

rate is to show that FMMSE(x) given in Theorem (1) has an

asymptotic distribution of type 3. It is well known from the

theory of order statistics (e.g. [6],[7]) that if a distribution has

an asymptotic distribution for the maximal order statistic, that

it is one of three types. The type 3 asymptotic distribution,

also called the Gumbel type, is given by

Λ3(x) = e−e−x −∞ < x < ∞ . (6)

With these definitions established, the following theorem can

be stated.

Theorem 2. ([8]) The limiting distribution of the extreme or-
der statistics drawn from the distribution FMMSE(x) is of
type 3.

Using the previous theorem, the scaling rate can be shown

to satisfy the following corollary:

Corollary 1. ([8]) For fixed M , N ≤ M , and ρ, the through-
put for Scheme C asymptotically scales as M log log n, or

lim
n→∞

R

M log log n
= 1.

The corollary shows that the asymptotic scaling rate of

Scheme A is M log log n, which is the same scaling rate as

that found in [1] which did not use LMMSE receivers. While

the asymptotic scaling rate is the same, the LMMSE receivers

support a higher rate leading to a rate offset between using

LMMSE receivers and not using optimal combining.
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4. FEEDING BACK THE MAXIMUM SINR PER
USER

Scheme B has each user feedback the maximum post-processed

SINR value and the beam index that produced it. This scheme

is suboptimal in that the global maximum for a particular

beam may not be fed back due to the constraint that each user

can only feed back one value. Even though it is suboptimal,

it will be shown that Scheme B has the same asymptotic scal-

ing as Scheme A, and empirically it will be shown that the

throughput for Scheme A and Scheme B converge. The anal-

ysis of Scheme B raises some issues that do not occur in the

analysis of Scheme A.

The first problem is how to characterize maxj SINRi,j .

The main concern is that although the SINR values at a par-

ticular user are marginally identically distributed, they are not

independent. Thus classical order statistics cannot be utilized.

Ideally, the joint distribution could be found, but this is too

complicated. To attack the problem, the distribution function

will be bounded from above and below. The desired asymp-

totic results will be shown to hold on the bounds, thus guar-

anteeing that the true distribution has the desired properties.

The bounds of interest are the classical Fréchet Bounds

Theorem 3. ([7], The Fréchet Bounds) Let F (x) be an
m-dimensional distribution function with marginals Fj(x),
1 ≤ j ≤ m. Then, for all x1, x2, . . . , xm

max

⎛
⎝0,

m∑
j=1

Fj (xj) − m + 1

⎞
⎠ ≤ F (x1, x2, . . . , xm)

≤ min (F1 (x1) , . . . , Fm (xm)) .

The Fréchet Bounds provide control of the unknown joint
distribution of the SINR values after optimal combining, and
can provide bounds on the order statistic because all the
marginal distributions are identical:

max (0, M (FMMSE (x)− 1) + 1) ≤ FMaxMMSE(x)

≤ FMMSE(x) (7)

where FMaxMMSE is the unknown distribution of the max-

imum SINR at a user after optimal combining. The upper

bound in Equation (7) is in terms of FMMSE(x) and thus by

Corollary (1) is of type 3. Substituting the distribution into

the lower bound and using limiting arguments detailed in [8]

shows that the lower bound is also of type 3. Since both the

upper and lower bound are of type 3, the unknown distribution

FMaxMMSE is also of type 3.

The second issue that arises with Scheme B is that if each

user only feeds back the maximum SINR and the associated

beam index, the number of values to maximize over for each

beam at the transmitter is a random number. For example, in

Figure 1, there are nine users and at the transmitter, the num-

ber of users feeding back a particular beam index is random.
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Fig. 1. 9 User System only Feeding Back Beam Index and Largest
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Fig. 2. Theoretical vs. Empirical Distribution for SINR after Opti-

mal Combining for M = 5, N = 2, SNR = 10dB

In this case three users feed back beam index 1, two users feed

back beam index 2, and so on.

The number of values to maximize over at the transmitter

determines the exponent of the distribution of the order statis-

tics. By the symmetry of the system model, each beam is

equally likely to produce the maximum. Thus the number of

values to maximize over at the transmitter is determined by

the multinomial distribution. As the number of users in the

system grows, by the law of large numbers the number of in-

dices fed back for each transmit beam approaches n
M . This is

made rigorous in [8]. The key is that the exponent grows lin-

early with n, which combined with the Fréchet bounds yields

the following corollary:

Corollary 2. [8] For fixed M , N ≤ M , and ρ, the throughput
for Scheme D asymptotically scales as M log log n, or

lim
n→∞

R

M log log n
= 1.
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Figure 2 shows the empirical distribution distribution of

the maximum SINR at a user as well as the Fréchet bounds.

Although the Fréchet bounds are sufficient to show the asymp-

totic scaling, the upper Fréchet bound is very loose. For nu-

merical results, a tighter tractable bound is useful. Although

it could not be shown rigorously, empirical evidence suggests

that the SINR values after optimal combining are negatively

associated. The definition of negative association is as fol-

lows:

Definition 1. ([9], Negative Association) Random variables
X1, X2, . . . , Xk are said to be negatively associated if for ev-
ery pair of disjoint subsets A1, A2 of {1, 2, . . . , k},

Cov {f1 (Xi, i ∈ A1) , f2 (Xj , j ∈ A2)} ≤ 0

whenever f1 and f2 are both increasing or both decreasing.

Negative association is a multivariate generalization of

negative correlation. Intuitively, negative association seems

plausible because the larger one signal’s power, the more in-

terference it can cause, thus the other signals’ SINRs are most

likely going to decrease. The key property of interest is that if

X1, . . . , XN are negatively associated random variables, then

Pr (X1 ≤ x1, . . . , XN ≤ xN ) ≤
N∏

i=1

Pr (Xi ≤ xi) .

Applying this to our distribution, we conjecture a tighter up-

per bound is given by

FMaxMMSE(x) ≤ [FMMSE(x)]M (8)

The bound provided by Equation (8) is much tighter than

the upper Fréchet bound as noticed in Figure 2. Using the

lower Fréchet bound and the upper bound provided by nega-

tive association, Figure 3 compares the throughput of Scheme
A and Scheme B as a function of the number of users in the

system for various SNRs. As the number of users in the sys-

tem increases, the two schemes converge to the same through-

put. This is expected, since as the number of users increases,

the probability of not feeding back the global maximum for

a particular transmit beam decreases, thus yielding equal per-

formance with less feedback. It is also observed that as the

SNR increases, the system becomes dominated by interfer-

ence. For example, in Figure 3, the difference in throughput

between an SNR of 20 dB and 30 dB is negligible.

5. CONCLUSION

Receivers with multiple receive antennas are capable of per-

forming more sophisticated reception techniques than receivers

with a single antenna. It is well known that the optimal lin-

ear receiver is the LMMSE receiver. Extending the seminal

work of [1], a random beamforming scheme where each user

feeds back the post-processed SINR is considered and shown
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Fig. 3. Throughput as a Function of Number of Users for Different

Schemes for M = 5, N = 2 and Various SNRs

to scale as M log log n. Feedback reduction is possible by

considering feeding back only the maximum post-processed

SINR and the associated beam index. This reduced feedback

scheme also scales as M log log n, and it is observed that as

the number of users increases, the reduced feedback scheme

approaches the performance of the un-thresholded scheme.
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