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Abstract—The proportional fair sharing (PFS) algorithm has
been used in multi-user systems as an attempt to balance fairness
and performance of the system throughput. Motivated by the
cellular downlink scheduling problem, it is shown that when
the rates of each user are i.i.d., the performance of the PFS
scheduling algorithms is asymptotically equivalent to a purely
greedy scheduling algorithm. The mean asymptotic throughput
of the PFS algorithm is characterized and the rate of convergence
to this limit is derived under i.i.d. models. Additionally the
asymptotic covariance matrix about the convergence point is
stated.

I. INTRODUCTION

Scheduling users efficiently in the downlink channel is an
important question whose solutions balance system throughput
and fairness. Suppose there are n users in a given cell and the
base station has M transmit antennas and n > M . When there
is no coding across time or frequency, at most a subset of M
of the n users can be scheduled for simultaneous transmission
by the base station if all the users are to receive independent
signals. The central question addressed by any scheduling
algorithm is how to select the k ≤ M users for transmission
during any given scheduling epoch.

Greedy scheduling algorithms are attractive due to their
ease of implementation and good performance but ignores
any fairness criterion. The proportional fair sharing (PFS)
algorithm is a scheduling algorithm that tries to balance
performance and fairness by considering the ratio of each
user’s current rate to their average scheduled rate and selecting
the user with the largest ratio.

This contribution shows that when the rates are i.i.d., under
suitable conditions on the distribution, the PFS algorithm’s
performance converges to the performance of the greedy
algorithm asymptotically in time. A transmit scheme such
that the rates are captured in a scalar sufficient statistic that
is measured at each receiver such as signal-to-noise ratio
(SNR) or signal-to-interference plus noise ratio (SINR) is
assumed. In the appropriate state space, the convergence is
equivalent to showing the two algorithms converge to the same
stationary limit point. The rate of convergence of the PFS
algorithm to the limit point is characterized. Therefore the
PFS algorithm can be used to ensure some degree of fairness
and asymptotically achieve the performance of the greedy
algorithm. These results are shown by leveraging the theory
of stochastic approximations [1], as is done in the motivating
work [2].

The organization of the paper is as follows: the PFS
algorithm is described in detail in Section II. The convergence
of the PFS algorithm to the greedy algorithm when the rates
are bounded is considered in Section III and the convergence
results are extended to the case where the rates are unbounded
in Section IV. The rate of convergence to the fixed stationary
point and the asymptotic covariance matrix of the distance
from the stationary point is stated in V. Section VI summarizes
the results and concludes the contribution.

II. THE PROPORTIONAL FAIR SHARING ALGORITHM

The general proportional fair sharing problem formulation
follows the set-up established in [2]. The results of [2] show
that under general conditions the PFS algorithm converges, but
does not address where it converges to due to the generality of
the conditions. Additionally, due to the generality of the con-
ditions, the convergence is weak. In this work, we show that
under an i.i.d. model, the convergence is to the performance
of the greedy algorithm almost surely.

Let there be N users in the system and let Xi,n be the
instantaneous rate of user i at time slot n. The Xi,n are
assumed to be i.i.d. continuous, non-negative random variables
for all 1 ≤ i ≤ N and n ∈ N+. At time n + 1, let
the rates Xi,n+1 be known at the scheduler for all i. The
indicator random variable Ii,n+1 denotes the event that user
i is scheduled for time slot n + 1. The average scheduled
throughput of the ith user after n time slots is denoted by θi,n
which is defined as follows:

θi,n =

n∑
l=1

Xi,lIi,l
n

. (1)

The greedy algorithm selects the user with the largest in-
stantaneous throughput at every time slot n, i.e. the scheduling
function for time slot n+ 1 is given by

arg max
1≤i≤N

{Xi,n+1} . (2)

The PFS algorithm selects the user with the largest ratio

arg max
1≤i≤N

{
Xi,n+1

θi,n

}
. (3)

When the PFS algorithm starts, all the initial average sched-
uled rates θi,n are zero, and the ratio in Equation 3 is
undefined. This was observed in [2] and a solution is to
modify the ratio slightly. Let di be positive constants for



1 ≤ i ≤ N , which can be arbitrarily small. Define the modified
PFS algorithm as performing the following function:

arg max
1≤i≤N

{
Xi,n+1

di + θi,n

}
. (4)

The ratio defined in Equation 4 is always well defined since
the rates are non-negative. In this work it is assumed that
di = d for all i and that d is incredibly small, and is considered
only to be needed so that the ratio is well defined during
the initial phases of the algorithm, i.e. until every user is
scheduled at least once so that average throughput term is
non-zero for every user. Because the rates Xi,n are assumed
to be continuous, the probability of there being a tie in either
Equation 3 or 4 is zero. Having established the basics of
the PFS algorithm, its convergence properties will now be
addressed.

III. CONVERGENCE WITH BOUNDED RATES

In this section the non-negative i.i.d. rate random variables
Xi,n are assumed to be bounded from above, i.e. there exists
some constant K such that Pr(Xi,n > K) = 0 for all i and n.
The key to showing the convergence result is to put the PFS
algorithm into the frame work of a stochastic approximation
(SA) algorithm, and leverage the theory of SA algorithms.
The general form of the SA algorithm, as defined in [3], is as
follows. Let (ωn)n≥1, (ηn)n≥1 be two sequences of Rp and
Rd valued vectors respectively and let H : Rd×Rp 7→ Rd. The
stochastic approximation algorithm is defined by the sequence
(θn)n≥1 given as follows:{
θ0 ∈ Rd
θn+1 = θn + εn+1H

(
θn, ωn+1

)
+ εn+1η

n+1, n ∈ N+,
(5)

where (εn)n≥1 is a sequence of positive real numbers called
the gain of the algorithm and ηn is a small residual perturba-
tion.

Let θn = [θ1,n, . . . , θN,n]
T ∈ RN be the vector of

average throughputs, where it is understood that superscripts
are time indices for vector quantities and subscripts indicate
elements of a vector at a particular time index. Likewise, let
Xn = [X1,n, . . . , XN,n]

T ∈ RN be the vector of rates and let
In+1(θn, Xn+1) ∈ RN×N be the indicator matrix which is
an N ×N matrix of zeros except for the ith diagonal element
which is unity if user i is scheduled for time slot n + 1.
The indicator matrix In+1(θn, Xn+1) is explicitly written as
a function of the vector of average throughputs θn and current
rates Xn+1 since these vectors determine which component is
non-zero by Equation 4.

The vector of average throughputs θn+1 will now be written
in the SA framework of Equation 5. Let ωn+1 = Xn+1,
εn+1 = 1

n+1 , and the perturbation sequence ηn+1 = 0 for all
n. Let it also be assumed that the initial average throughputs
are zero for every user, i.e. θ0 = 0 ∈ Rd. Then the following

equation gives the desired recursive relationship:

θn+1 = θn + εn+1H
(
θn, Xn+1

)
= θn + εn+1

[
In+1(θn, Xn+1)Xn+1 − θn

]
= θn + εn+1Y

n, (6)

where H
(
θn, Xn+1

)
=
[
In+1(θn, Xn+1)Xn+1 − θn

]
=

Y n. Equation 6 is established in [2].
The ODE Method for solving SA algorithms attempts to

show that the random SA algorithm generally behaves like a
dynamical system, and that asymptotically the SA algorithm
converges to a stationary point or stationary set of a set of
differential equations. Let h be called the mean function, and
in the i.i.d. setting, as mentioned in [3], it can be defined as:

h(θ) ,
∫
H(θ, x)µ(dx) (7)

where X ∈ RN have common distribution µ, θ ∈ RN and
H(θ, ·) is µ-integrable for every θ ∈ RN . The interpretation
of the mean function is that given the current location in the θ-
space is θ, on average one will move in the direction h(θ). Let
(Fn)n≥0 be the filtration generated by θ0 and (Xn)n≥1. Then
letting the random vector of the current average throughputs
θn be the argument of the mean function produces

h(θn) = E
(
H(θn, Xn+1)|Fn

)
. (8)

The right hand side of Equation 8 says where the algorithm is
going to move on average in the next time step given the past
(the information contained in the filtration Fn). Lastly, define
a martingale difference sequence (MDS) as follows:

Definition 1: Let (Xn)n≥0 and (Y n)n≥1 be two Rd-valued
random sequences and let (Fn)n≥1 be the filtration generated
by (Xn)n≥1. The sequence (Y n)n≥1 is called a martingale
difference sequence if

E(Y n+1|Fn) = 0 for all n ∈ N.

Having established the preceding definitions, Equation 6 can
be written in the following form suitable for analysis by the
ODE method:

θn+1 =θn + εn+1h(θ
n)+

εn+1

(
In+1(θn, Xn+1)Xn+1 − θn − h(θn)

)
(9)

=θn + εn+1h(θ
n) + εn+1δM

n+1 (10)

where h(θn) is the mean function and δMn+1 is a MDS.
That δMn+1 is a MDS follows from the definition of H ,
mean function h (Equation 8) and using the filtration (Fn)n≥0
generated by θ0 and (Xn)n≥1.

The fact that Equation 6 could be written in the form of
the sum of a mean function and a MDS is not surprising. As
pointed out in Chapter 5 of [4], this form naturally arises when
Y n can be written in the form H(θn, Xn) and the Xn are
mutually independent, as is the case here. If the conditions
of the celebrated Kushner-Clark Theorem ([3], [4]) can be
verified, the result of the theorem says that almost surely the



limit of sample paths θn are trajectories of the differential
equation

θ̇ = h(θ) (11)

The key implication of the Kushner-Clark Theorem is that the
SA algorithm, and thus the PFS algorithm, can asymptotically
be analyzed using the theory of differential equations and
dynamical systems. Additionally, if it can be shown that
there is a unique singleton {θ∗} such that regardless of the
initial condition θ0, the zero or equilibrium point of Equation
11 is θ∗, then the Kushner-Clark Theorem also says that
(θn)n≥1 converges almost surely to θ∗ regardless of the initial
condition.

Having established the stochastic approximation framework,
it will now be shown that under bounded non-negative i.i.d.
random variables the average rate vector θn of the PFS
algorithm converges to the average rate vector θ̃n of the greedy
algorithm. This result will be shown via the following steps.
First, due to space considerations it will be assumed that the
conditions required of the Kushner-Clark Theorem hold so
the solution of the SA algorithm converges to an equilibrium
point of the differential equation given in Equation 11. Next,
a theorem in [2] is leveraged that states there exist a unique
equilibrium point, and thus the SA algorithm converges almost
surely to θ∗. Lastly, it will be shown that θ∗ corresponds to the
convergence point θ̃∗ under the greedy algorithm, so the two
algorithms are asymptotically equivalent. It should be pointed
out that under the i.i.d. model which yields Equation 9, almost
sure convergence results are attainable, as opposed to the weak
convergence results found in [2] which consider more general
random sequences (Xn)n≥1.

The existence of a unique global attractor θ∗ for Equation
11 is given by Theorem 2.2 in [2]. The proof of the theorem
is based on dynamical systems theory, more specifically the
monotonicity property of the solution to Equation 11. Com-
bining the result of the Kushner-Clark Theorem with Theorem
2.2 in [2], one obtains that the PFS algorithm converges almost
surely to a unique equilibrium point θ∗ regardless of the initial
condition θ0.

Since it is known that the PFS algorithm converges to a
unique θ∗ almost surely, the last step is to show that θ∗

corresponds to the average throughput given by the greedy
algorithm. First, the average throughput of the greedy algo-
rithm under the i.i.d. model is established in the following
lemma:

Lemma 1: Let X1,n, . . . , XN,n be i.i.d. non-negative
bounded random variables for all n ∈ N+. Define
the maximum order statistic at time n as MN,n =
max {X1,n, . . . , XN,n} and let θ̃i,n be the average throughput
of user i at time n under the greedy scheduling algorithm given
by Equation 2. Then the average throughput of the greedy
algorithm θ̃i,n converges to θ̃∗i = E[MN ]

N almost surely for all
i ∈ {1, . . . , N} and MN does not depend on time.

Proof: Let Ĩi,n be the indicator random variable for
the event that user i was scheduled at time slot n under
the greedy algorithm. By Equation 2, Ĩi,n(Xn) = 1 if and

only if max {X1,n, . . . , XN,n} = Xi,n, and Ĩi,n(X
n) = 0

otherwise. Because the algorithm is greedy, Ĩi,n(Xn) is only
a function of the current rates Xn, and for simplicity the
the explicit functional dependence will be dropped from the
notation. Due to the i.i.d. Xi,ns, from [5] it is known that
Pr(Ĩi,n(X

n) = 1) = 1
N for all i and all n. The average

throughput of user i at time n can be written

θ̃i,n =
1

n

n∑
j=1

Ĩi,jXi,j . (12)

The expectation of Ĩi,jXi,j is given by

E[Ĩi,jXi,j ] = E[Xi,j |Ĩi,j = 1] · Pr(Ĩi,j = 1) =
E[MN,n]

N
.

(13)
By the underlying i.i.d. assumption, E[MN,n] does not depend
on the time index n, so it will be dropped. Let Zi,n = Ĩi,jXi,j ,
then Equation 12 can be rewritten as θ̃i,n = 1

n

∑n
j=1 Zi,j , and

the Zi,j are i.i.d. for each i. By the boundedness and non-
negativity of the Xi,n

E[|Zi,n|] = E[Zi,n] =
E[MN ]

N
<∞,

so the Strong Law of Large Numbers (SLLN) can be applied
and yields

θ̃i,n → θ̃∗i =
E[MN ]

N
a.s. as n→∞ for all i ∈ {1, . . . , N}.

(14)

With the previous lemma established, the convergence of
the PFS algorithm to the greedy algorithm is proven in the
following theorem:

Theorem 1: Let X1,n, . . . , XN,n be i.i.d. non-negative
bounded random variables for all n ∈ N+. The PFS algorithm
given by Equation 4 converges to the same average throughput
point θ̃∗ as the greedy scheduling algorithm given by Equation
2. Therefore the asymptotic performance in time of the two
algorithms under i.i.d. rates is identical.

Proof: Due to the Kushner-Clark Theorem and Theorem
2.2 from [2], the PFS algorithm converges to a unique point
θ∗. This solution θ∗ is the unique zero of the mean function
h. Lemma 1 states that the greedy algorithm under i.i.d. rates
converges to the average throughput point θ̃∗ = E[MN ]

N · 1N ∈
RN , where 1N is the N-dimensional vector of all ones. The
last step to show convergence of the PFS algorithm to the
greedy algorithm is to show that the convergence point of the
greedy algorithm θ̃∗ is a zero of the mean function h:

h
(
θ̃∗
)
=

∫
H
(
θ̃∗, x

)
µ(dx) (15)

= EX
[
I
(
θ̃∗, X

)
X
]
− θ̃∗ (16)

=
E[MN ]

N
· 1N − θ̃∗ (17)

= 0. (18)

Therefore, θ̃∗ is a zero of the mean function h, completing the
proof.



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User 1 Average Throughput

U
se

r 2
 A

ve
ra

ge
 T

hr
ou

gh
pu

t

PFS vs Greedy Algorithm with i.i.d. Uniform r.v.

 

 
PFS
Greedy
Equilibrium

Fig. 1. Sample Paths of the PFS and Greedy Algorithms for 2 i.i.d. Uniform
Rates

Figure 1 shows the sample paths of the PFS algorithm and
the greedy algorithm on the same set of realized i.i.d. uniform
random variables. For the two-dimensional uniform case, the
mean of the maximum order statistic is 2/3, so the equilib-
rium point is [1/3, 1/3]T . As is expected by the preceding
theory, both the PFS and greedy algorithms converge to the
equilibrium point.

IV. CONVERGENCE WITH UNBOUNDED RATES

Scheduling in wireless systems is often based on a metric
which is theoretically unbounded. For example, in [6], the
scheduling decision is based on the SINR random variables
which are supported on the non-negative real line. Unbounded
random variables pose problems for the SA algorithm because
at any iteration, the algorithm may move an arbitrarily large
distance and prevent convergence. In this section, conditions
on the unbounded Xi,n are found such the SA algorithm
converges to the greedy algorithm.

The question that is first addressed is when does the greedy
algorithm converge? The necessary and sufficient conditions
for the convergence of the greedy algorithm under the i.i.d.
model are given by the following theorem:

Theorem 2: Let X1,n, . . . , XN,n be i.i.d. non-negative ran-
dom variables for all n ∈ N+, let θ̃i,n be the average through-
put of user i at time n under the greedy scheduling algorithm
given by Equation 2 and MN,n = max {X1,n, . . . , XN,n}.
A necessary and sufficient condition for the convergence of
the greedy algorithm is that E[Xi,n] < ∞, in which case
for each user i ∈ {1, . . . , N} the algorithm converges to
θ̃∗i = E[MN ]

N <∞.
Proof: First, necessary and sufficient conditions on the

existence of the mean of the maximum order statistic must be
given if it is hoped that the algorithm converge to the desired
quantity. This is given by the following Lemma:

Lemma 2: Let X1, . . . , XN be i.i.d. non-negative random
variables and MN =

∨N
i=1Xi. Then E[MN ] <∞ if and only

if E[Xi] <∞.

To provide necessary conditions on the convergence of the
greedy algorithm, certain conditions such that the normalized
sum of i.i.d. random variables diverges will be needed. These
conditions are provided by the following theorem:

Theorem 3: (Thm 7.2, Chapter 1, [7])
Let X1, X2, . . . be i.i.d. with EX+

i = ∞ and EX−i < ∞
where X+

i and X−i are the positive and negative parts of the
random variables respectively. If Sn = X1 + · · · + Xn then
Sn/n→∞ almost surely.
With the result of Lemma 2 and Theorem 3 stated, Theorem 4
can be proven. By Lemma 2, a necessary and sufficient condi-
tion for the existence of E[MN,n] is that E[Xi,n] <∞. Thus
E[Xi,n] < ∞ is a sufficient condition for the convergence
of the greedy algorithm because the hypotheses of the SLLN
hold and using the same arguments as Lemma 1. Because
E[X−i,n] = E[M−N,n] = 0, if E[Xi,n] = ∞, then by Lemma 2
E[MN,n] =∞ and by Theorem 3 the greedy algorithm would
diverge to infinity. Therefore the condition E[Xi,n] < ∞ is
a necessary condition. When the greedy algorithm converges,
by the SLLN it converges to θ̃∗i = E[MN ]

N for each user i, so
the convergence point is θ̃∗ = E[MN ]

N 1N .
The next step is to show that these same conditions guar-

antee the convergence of the PFS algorithm to the same point
θ̃∗ = E[MN ]

N 1N . A method of analysis for the convergence
of SA algorithms with possibly unbounded increments is the
method of expanding truncations.

The expanding truncation method is based on the following
formulation of the PFS algorithm:

θn+1 =I[‖θn+εn+1Y n‖<b] (θ
n + εn+1Y

n)+

I[‖θn+εn+1Y n‖≥b]θ
† (19)

where θ† ∈ RN is a fixed point. Here I[·] ∈ RN×N is an
indicator matrix of zeros whose diagonal elements are one
when the argument in the subscript is true, and zero otherwise.
Equation 19 states that when the norm of the next iteration
θn+ εn+1Y

n is less than some positive constant b, update the
state θn+1 as normal, otherwise the state vector gets updated
as θn+1 = θ†. Equation 19 is formulated to prevent the state
variable from leaving some bounded set in RN .

The basic idea is that the bounded set containing the SA
algorithm is expanded at each iteration, and if it can be
shown that the SA algorithm leaves these bounded sets only a
finite number of times, then the performance of the expanding
truncation method is asymptotically equivalent to the SA
algorithm as if it were unconstrained. The theorems provided
in [8] that show convergence of the expanding truncations
methods typically depend on properties of the mean function
h. In this case, the mean function h is not explicitly known in
closed form. Because of the similarity of the PFS algorithm
with i.i.d. rates to the Strong Law of Large Numbers (SLLN),
Etemadi’s proof [9] of the SLLN can be emulated to prove the
convergence of the PFS algorithm with unbounded rates under
the same conditions as Theorem 2 to the greedy algorithm.
The following theorem, given without proof, provides this
convergence.
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Fig. 2. Sample Paths of the PFS and Greedy Algorithms for 2 i.i.d. Exp(1)
Rates

Theorem 4: Let X1,n, . . . , XN,n be i.i.d. non-negative ran-
dom variables such that E[Xi,n] <∞ for all n ∈ N+. The PFS
algorithm given by Equation 4 converges to the same average
throughput point θ̃∗ = E[MN ]

N · 1N as the greedy scheduling
algorithm given by Equation 2 and Theorem 2.

This section is concluded with an example. Figure 2 shows
the sample paths of the PFS and greedy algorithm on the
same set of realized i.i.d. exponential-1 random variables. The
exponential random variables have unbounded support, but
the convergence still occurs as expected. In the case of two
exponential random variables, the mean of the maximum order
statistic is 1.5, so the equilibrium point is given by [3/4, 3/4]T .

V. RATE OF CONVERGENCE

In Sections III and IV, it is shown that the PFS algorithm
under the i.i.d. model converges to a single average rate vector
θ∗, and that θ∗ corresponds to the performance of the greedy
scheduler. The goal of this section is to find out how fast ‖θn−
θ∗‖ → 0. This section will leverage the results in Chapter 3
of [8], specifically the following theorem:

Theorem 5: (Theorem 3.1.1, [8]) Under suitable conditions
(see Chapter 3 of [8]) , θn as given in Equation 19 converges
to θ∗ with the following convergence rate:

‖θn − θ∗‖ = o
(
εβn
)
, (20)

for some β ∈ (0, 1].
It can be shown that the conditions required to satisfy

Theorem 5 are satisfied for the problem of interest. Once these
conditions are verified, the following corollary can be proven:

Corollary 1: Let Xi,n, . . . , XN,n be continuous, non-
negative i.i.d. random variables for n ∈ N+ with continuous
densities f such that E[X2

i,n] < ∞. The convergence rate of
the PFS algorithm is given by

‖θn − θ∗‖ = o

(
1

nβ

)
, (21)

where β = 1
2 − ε and ε > 0.
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Fig. 3. Distance from Equilibrium versus Time for N = 3, Xi,n ∼ Exp(1)

Figure 3 shows the results of a simulation run with N = 3
and Xi,n ∼ Exp(1). The convergence towards equilibrium
of the PFS algorithm will not be monotonic due to the
randomness of the rates and sample paths of the algorithm.
The results of Theorem 5 and Corollary 1 give the asymptotic
scaling rate in terms of o notation. The dashed curve in Figure
3 shows the function f(n) = n−

1
2 . The long term convergence

rate of the PFS algorithm to equilibrium is slightly slower than
this, but the curve shows that the results of the theory are
reasonable.

VI. CONCLUSION

This contribution addresses the asymptotic performance of
the proportional fair sharing algorithm under i.i.d. rate models.
Under this model it is shown in the state space of average
throughput and under suitable conditions on the distribution of
the rates that the PFS algorithm converges to the same fixed
point as the greedy scheduling algorithm. Therefore, from the
point of view of average throughput, asymptotically in time
there is no difference between using the PFS algorithm and
the greedy algorithm. Under i.i.d. models, it is shown that the
rate of convergence of the PFS algorithm to the equilibrium
average throughput point is o

(
1
nβ

)
where β = 1

2−ε and ε > 0.
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