Sensor Fusion for Intrusion Detection Under False Alarm Constraints

Matthew Pugh¹ Jerry Brewer¹ Jacques Kvam²

¹Sandia National Laboratories ¹

²Verdigris Technologies

SAS 2015

¹Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-2533 C

Questions Test Configuratior

Table of Contents

1 Introduction

- Questions
- Test Configuration

2 Detection Theory

- What's wrong with our data?
- Binary Detection
- Approaching our data?

3 Noise Modeling and Results

- Time and Frequency Domain Analysis
- Results
- Future Directions and Conclusion

Questions Test Configuration

Introduction

What are we doing differently?

Questions Test Configuration

Introduction

What are we doing differently?

• Trying to design algorithms with a prescribed false alarm rate

What are we doing differently?

• Trying to design algorithms with a prescribed false alarm rate How is this different than past work?

What are we doing differently?

• Trying to design algorithms with a prescribed false alarm rate

How is this different than past work?

- We do not understand the statistics of the events we are trying to detect
- No ROC curves!

What are we doing differently?

• Trying to design algorithms with a prescribed false alarm rate

How is this different than past work?

- We do not understand the statistics of the events we are trying to detect
- No ROC curves!

Why is this important?

What are we doing differently?

• Trying to design algorithms with a prescribed false alarm rate

How is this different than past work?

- We do not understand the statistics of the events we are trying to detect
- No ROC curves!

Why is this important?

- Mostly focused on detectability
- False alarms cost money

Questions Test Configuration

Motivational Questions

How confident can we be in a decision?

Questions Test Configuration

Motivational Questions

How confident can we be in a decision?

• Decision theory

Questions Test Configuration

Motivational Questions

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

- The more we know the better
- What can be done when very little is known?

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

- The more we know the better
- What can be done when very little is known?
 - No signal model
 - Try to manipulate into something that is known

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

- The more we know the better
- What can be done when very little is known?
 - No signal model
 - Try to manipulate into something that is known

How do design constraints change the system?

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

- The more we know the better
- What can be done when very little is known?
 - No signal model
 - Try to manipulate into something that is known

How do design constraints change the system?

• Detectability versus false alarm

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

- The more we know the better
- What can be done when very little is known?
 - No signal model
 - Try to manipulate into something that is known

How do design constraints change the system?

• Detectability versus false alarm

How to distinguish between noise and not noise?

How confident can we be in a decision?

• Decision theory

What do we have to know to make good decisions?

- The more we know the better
- What can be done when very little is known?
 - No signal model
 - Try to manipulate into something that is known

How do design constraints change the system?

• Detectability versus false alarm

How to distinguish between noise and not noise?

Assumption: Components function properly

Questions Test Configuration

Test Bed

Sensor Module

- Tri-axis accelerometer
- Photo-detector
- Passive infrared sensor

Instrumented Room

- Placed 8 sensor modules along walls
- Modules connected via CAN bus

Objective

- Collect background data
- Collected data during entry
- Develop algorithm to detect entry given a false alarm rate
 - Binary decision problem

Unknown Everything?

Binary Decision Problem: Intrusion?

- What are the null and alternative hypotheses?
- What is the distribution of the background noise data?
- What is the structure/distribution of the signal?

Unknown Everything?

Binary Decision Problem: Intrusion?

- What are the null and alternative hypotheses?
- What is the distribution of the background noise data?
- What is the structure/distribution of the signal?

Unclear how to model PIR Sensors

Classic Example: Detection Theory

Deciding whether or not a DC signal is present in AWGN

- H_0 : noise only
- H_1 : Known DC signal + noise
- Note: Signal and noise models are known!

What's wrong with our data? Binary Detection Approaching our data?

Classic Example: Detection Theory

Deciding whether or not a DC signal is present in AWGN

- H_0 : noise only
- H_1 : Known DC signal + noise

What's wrong with our data? Binary Detection Approaching our data?

Classic Example: Detection Theory

Deciding whether or not a DC signal is present in AWGN

- H_0 : noise only
- H_1 : Known DC signal + noise

What's wrong with our data? Binary Detection Approaching our data?

Classic Example: ROC Curves

Error probabilities depend on Signal-to-Noise Ratio (SNR)

- Signal power
- Signal length
- Noise variance

Unknown Everything - Revisited

Binary Decision Problem: Intrusion?

- What are the null and alternative hypotheses?
- What is the distribution of the background noise data?
- What is the structure/distribution of the signal?

Unclear how to model PIR Sensors

Unknown Everything - Revisited

Binary Decision Problem: Intrusion?

- What are the null and alternative hypotheses?
- What is the distribution of the background noise data?
- What is the structure/distribution of the signal?

Unclear how to model PIR Sensors

Approach

- Model background "noise"
- Declare an event when signal deviates from the background by a specified amount
- Threshold determined by false alarm constraint
- Theoretical ROC curves not possible

Matching the Noise Distribution

Statistical Model of Noise Distribution \rightarrow Problem Solved

- Compute threshold to meet false alarm requirement
- Declare an event when signal metric exceeds threshold

Example

- Selected threshold s.t. probability of false alarm is 5%
- Threshold computed from distribution of noise metric
- What is the distribution of the noise metric?

Pugh et al.

Time Domain Approach

Looks "close" to a Gaussian marginal distribution

- Need to be confident otherwise false alarm constraint is meaningless
- How to have confidence?
 - Match data to theoretical model
 - Gather large amounts of data for empirical estimates

Time Domain Approach

Looks "close" to a Gaussian marginal distribution

- Need to be confident otherwise false alarm constraint is meaningless
- How to have confidence?
 - Match data to theoretical model
 - Gather large amounts of data for empirical estimates

Time Domain Approach

Looks "close" to a Gaussian marginal distribution

- Need to be confident otherwise false alarm constraint is meaningless
- How to have confidence?
 - Match data to theoretical model
 - Gather large amounts of data for empirical estimates

Frequency Domain Approach

Analyze distribution of frequency components

Frequency Domain Approach

Analyze distribution of frequency components

Real Component of FFT Coefficient

 Distribution of frequency components is <u>not</u> rejected by hypothesis test

Frequency Domain Approach

Analyze distribution of frequency components

- Distribution of frequency components is <u>not</u> rejected by hypothesis test
- More confidence in match

Frequency Domain Approach

Analyze distribution of frequency components

Imaginary Component of FFT Coefficient

Real Component of FFT Coefficien

- Distribution of frequency components is <u>not</u> rejected by hypothesis test
- More confidence in match
- How to combine frequency component information?

Mahalanobis Distance

Want to combine as much frequency information as possible

Want to combine as much frequency information as possible

- Requires sub-sampling of frequency components
 - Parseval's Identity

Want to combine as much frequency information as possible

- Requires sub-sampling of frequency components
 - Parseval's Identity
- Use Principal Component Analysis (PCA)

Want to combine as much frequency information as possible

- Requires sub-sampling of frequency components
 - Parseval's Identity
- Use Principal Component Analysis (PCA)

Need metric to combine principal components and sensors

- Mahalanobis distance
- Easily computable
- Known distribution given Gaussian frequency components
- χ² distribution for Mahalanobis distance
- Closed-form threshold

Want to combine as much frequency information as possible

- Requires sub-sampling of frequency components
 - Parseval's Identity
- Use Principal Component Analysis (PCA)

Need metric to combine principal components and sensors

- Mahalanobis distance
- Easily computable
- Known distribution given Gaussian frequency components
- χ^2 distribution for Mahalanobis distance
- Closed-form threshold

Time and Frequency Domain Analysis Results Future Directions and Conclusion

Combined Results

- 8 PIR sensors
- False Alarm Constraint: $P_{FA} = 10^{-3}$ per year

Event Data

Scaled Event Data

Future Directions

Adapting Statistical Parameters

• Continuously update estimates of mean and covariance

Future Directions

Adapting Statistical Parameters

• Continuously update estimates of mean and covariance

Optimization of Design Parameters

• FFT length, subset selection method, sample length, new metrics, etc.

Future Directions

Adapting Statistical Parameters

• Continuously update estimates of mean and covariance

Optimization of Design Parameters

• FFT length, subset selection method, sample length, new metrics, etc.

Fully Integrate Sensors

• Combine PIR with photo-detectors and accelerometers

Future Directions

Adapting Statistical Parameters

• Continuously update estimates of mean and covariance

Optimization of Design Parameters

• FFT length, subset selection method, sample length, new metrics, etc.

Fully Integrate Sensors

• Combine PIR with photo-detectors and accelerometers

Sensor Failure Detection

- Current algorithm declares an event when threshold is exceeded
 - Sensor failure could cause algorithm to exceed threshold
- Need to disambiguate between failures and events

Conclusion

Focused on development of detection algorithms with false alarm constraints

- Found metric on background data that matches known closed-form distribution
 - Frequency components
 - Subset Selection: Principal Component Analysis
 - Mahalanobis Distance: χ^2 distributed
 - Combine all PIR sensors into a single metric
- Determine threshold to meet false alarm constraint
- Algorithm performs well on collected data

Still a lot of work to be done

Time and Frequency Domain Analysis Results Future Directions and Conclusion

Conclusion

Thank You!

Special Thanks: Jacques Kvam Jerry Brewer

Any Questions?