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Abstract—Sensor fusion algorithms allow the combination of
many heterogeneous data types to make sophisticated decisions.
In many situations, these algorithms give increased performance
such as better detectability and/or reduced false alarm rates. To
achieve these benefits, typically some system or signal model is
given. This work focuses on the situation where the event signal
is unknown and a false alarm criterion must be met. Specifically,
the case where data from multiple passive infrared (PIR) sensors
are processed to detect intrusion into a room while satisfying
a false alarm constraint is analyzed. The central challenge is
the space of intrusion signals is unknown and we want to
quantify analytically the probability of false alarm. It is shown
that this quantification is possible by estimating the background
noise statistics and computing the Mahalanobis distance in
the frequency domain. Using the Mahalanobis distance as the
decision metric, a threshold is computed to satisfy the false alarm
constraint.

I. I NTRODUCTION

A. The Problem

Sensor fusion algorithms are used in a myriad of appli-
cations to improve performance compared to single sensor
systems by increasing detectability and resolution, decreasing
false alarm rates, etc. See for example [1], [2]. The ultimate
goal of sensor fusion algorithms is to make more informed and
reliable decisions. Along these lines, the objective of this work
is to develop a framework to characterize the false alarm rate
of a multi-sensor intrusion detection system when the event
signals are a priori unknown. False alarm constraints can be
analytically or computationally characterized in many signal
processing applications where the signal and noise models
are known. For example, in the canonical detection theory
problem of finding a sinusoid of known frequency, phase,
and magnitude in an additive white Gaussian noise (AWGN)
environment, a threshold placed after a matched filter traces
out a theoretically computable receiver operating characteristic
(ROC) curve (see [3]). In this example, the threshold is
selected to meet the false alarm constraint (with a few extra
steps to account for the constraint having a temporal aspect,
i.e. false alarms per unit time).
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Fig. 1. Intruder Event as Observed By Two Different Sensors.

The signal model is unknown in the situations analyzed in
this work. Figure 1 shows an example of data collected on a
testbed from two PIR sensors as a person walked into the room
being monitored (data collection will be covered in SectionII).
There are several things to notice from these time series. First,
the response of the sensors can take on many forms. Looking
specifically at sensor 5, the signal from 10 to 20 seconds looks
very different from the signal between 25 and 30 seconds, and
30 to 42 seconds. This is an example of what is meant by not
knowing the signal model. Secondly, comparing the signals
from sensor 5 and 6, sensor 6 only observes the intrusion event
from 30 to 42 seconds. One could use a threshold and logic
architecture to detect the events, e.g. whenever any sensor’s
voltage deviates from the DC offset by more than 0.5 volts,
declare an intrusion event. This could theoretically solvethe
problem if the background noise statistics are known, but
this leads to the third observation, to be discussed later, that
the background noise is non-independent and non-Gaussian.
Thus using a voltage threshold and combinatorial logic, while
possibly successful for detecting intrusions, cannot provide the
required false alarm guarantees.

The central problem addressed by this contribution is to
develop a sensor fusion algorithm to combine and process
signals from multiple PIR sensors to detect intrusion into a



room under the constraint that the probability of false alarm
not exceed some design parameter. This work only considers
a “normal” operating environment, i.e. false alarms causedby
abnormal environments such as rapid heating or cooling due
to HVAC operations are not considered. The probability of
false alarm constraint will be denotedα. An example of such
a constraint could be the probability of a single false alarmin
a single year is0.01, or stated another way the algorithm does
not have a single false alarm in a year with probability0.99.
In systems where false alarms are prohibitively expensive,a
premium is spent on being able to characterize and meet a false
alarm constraint at the possible expense of detectability.For
example, false alarms can have significant economic impacts
such as in security systems that trigger calls to the police (see
[4], [5]). In this work a sensor fusion algorithm is developed
that can quickly detect intrusions yet satisfies the specified
false alarm constraints. To our knowledge, very little work
has been done to create detection algorithms merging multiple
sensors where the signal model is unknown while still meeting
a false alarm requirement. One possibility for the lack of
research in this area is that a premium is typically placed on
characterizing the detectability of an algorithm. False alarms,
when they occur, are viewed as a nuisance rather than a
possibly catastrophic system failure. The approach taken in
this paper is to place a premium on characterizing the false
alarm rate of an algorithm which results in a loss detectability.

A brief description of our approach to this problem is now
given. Because the signal model is unknown, the ability to
quantify and meet a false alarm constraint rests in being
able to characterize the background noise. Along these lines,
days worth of background data is collected. Unfortunately,
this data reveals that the background noise behaves poorly
as it is non-Gaussian and non-independent. To combat this
the data is transformed into the frequency domain, where it
is observed that nearly all the real and imaginary frequency
components are marginally Gaussian distributed, but the joint
distribution over all the frequency coefficients is not jointly
Gaussian. By selecting a small enough subset of the frequency
components, the joint distribution looks nearly Gaussian.The
subset of frequency components is selected using principal
component analysis (PCA). Once the subset of coefficients
is selected, taking the Mahalanobis distance of the PCA
coefficients yields a chi-squared background noise distribution.
The Mahalanobis distance has a history of use in outlier
detection [6], [7], [8] and classification [9]. The combination
of PCA followed by a Mahalanobis distance has also been used
to find anomalous flights in [10] and detect network intrusions
in [11]. Having established a metric with a known distribution
on the background data set, a threshold can be computed on the
Mahalanobis distance that achieves the false alarm constraint.
It is then shown that applying this threshold to intrusion data
yields a decision algorithm that has very good performance.

II. DATA COLLECTION

The testbed used to collect data consisted of a shielded room
with eight custom designed sensor modules mounted along the

Fig. 2. Top: Sensor Module with PIR sensor, photodetector and three-axis
accelerometer. Bottom: Sensor Modules placed along wall of room via CAN
bus.

walls. The sensor module is shown in the top photograph of
Figure 2. Each module contains a Kionix KXRB5-2050 tri-axis
accelerometer, a Marktech 5052TD photo diode and a Pana-
sonic AMN24112 PIR sensor. In this work, we focus only on
the PIR sensor. The eight sensor modules are mounted around
the shielded room, as illustrated in the bottom photograph of
Figure 2. The sensor modules are connected via a CAN bus.
The PIR signal at each sensor module has a possible range of
0 to 3.3 volts and is uniformly scalar quantized with a 12 bit
quantizer at a rate of 100 Hz. The quantization level is selected
to be 12 bits because experiments with less resolution showed
that the noise random variable looked too discrete and could
not be modeled with high confidence using continuous random
variables. Because the quantization level is set to 12 bits,this
limited the sampling rate of the system to be 100 Hz given
the bandwidth of the hardware used in the experiment.

Days worth of data is collected with the shielded room
empty and closed to gather as much background data as
possible. Simple intrusion event data is collected and consisted
of a person opening the door to the shielded room, walking
about the room, exiting and closing the door. The PIR signal of
such an intrusion event is illustrated in Figure 1. Because the
objective is quantifying the false alarm constraint, data gath-
ering focused on the normal operating environment, whereas
data gathering would focus more on collecting event data when
characterizing the detectability is the primary goal.

III. I NTRUSION DETECTION ALGORITHM

A. Time Series Issues

The signal model for both the background noise signal and
possible intrusion event signals are unknown. The background
noise statistics can be estimated accurately by collecting
enough data. If the background noise statistics can be ac-
curately measured and modeled with a known closed form
probability distribution, then a threshold (possibly two sided
threshold) can be selected such that when the signal exceeds
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Fig. 3. Top: PIR time series. Bottom: Marginal distribution ofPIR sensor
data and a fitted normal distribution.

the threshold, an intrusion is detected. Because it is assumed
the noise statistics are known, the threshold can be designed to
meet the false alarm constraint by using the inverse cumulative
distribution function (CDF). At this point it should be noted
that having a closed form probability distribution that matches
the noise distribution is essential in computing the threshold.
If one wants to use the empirical distribution to compute the
threshold, data must be collected on the time scale of the false
alarm constraint, i.e. if one can only accept one false alarmper
year, a year’s worth of data must be collected, otherwise there
is no way to extrapolate the results to meet the false alarm
constraint. The collection of this volume of data is bypassed by
having confidence in a closed form distribution for the noise.
More data can provide more confidence in the estimates of the
noise statistics.

A natural place to start is to estimate the background noise
statistics in the time domain. The top plot of Figure 3 shows
background data collected with the testbed for a single sensor
over the course of104 seconds. The bottom plot of the
same figure shows the marginal empirical probability density
(in blue) from the data and a normal distribution fitted to
the data using maximum likelihood estimates of the mean
and variance (in red). The empirical distribution looks fairly
Gaussian except for some values which are over-represented,
but it is imperative that we have high confidence in the fitting
of the noise statistics to a closed form distribution. Using
the Lilliefors’ goodness-of-fit test ([12]) to test if the data
appears to come from an normal distribution, the test rejects
the null hypothesis (suggesting it doesnot comes from a
normal distribution) at anα-level of 0.001, i.e. the hypothesis
tests is 99.9% certain that the data does not come from a
Gaussian distribution. Thus using the raw time series samples
does not provide the desired closed form noise distribution.

B. Frequency Domain Approach

Analyzing the sensor data in the time domain does not
provide a closed form distribution that matched the noise
statistics. In this section the noise statistics is analyzed in the
frequency domain and the results are much more promising. To
convert to the frequency domain, the FFT is computed using
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Fig. 4. Top: Empirical density and distribution for the real part of the2nd

FFT coefficient and the fitted normal density. Bottom: Empiricaldensity and
distribution for the imaginary part of the2nd FFT coefficient and the fitted
normal density.

a window length of 128 with no overlap and no windowing
function. A delay is introduced into the algorithm as any
decision will have to wait for the FFT to be evaluated on the
samples. In this case 128 samples is chosen to minimize the
delay yet provide sufficient frequency resolution. An overlap
can be introduced to reduce the delay, but this will increasethe
correlation between frequency coefficients between windows.
For this reason, the overlap length is set to zero.

Figure 4 shows the empirical distributions of the real and
imaginary components of the2nd FFT coefficient and a
Gaussian fit to the data. Visually, looking at the densities (the
plots on the left hand side), it may appear worse than the
time series distribution of Figure 3 from the previous section.
However, looking at the empirical distribution function com-
pared to the theoretical distribution (the right hand plots), they
appear nearly identical. This is important as the Lilliefors’ test
is based on the supremum norm of the difference between
the distribution functions. Indeed, the null hypothesis isnot
rejected even at a 99.9% confidence. This is not to say that we
are 99.9% certain of the match, as this would require switching
the role of the null and alternative hypotheses in the Lilliefors’
test, which does not exist. Theα-level of 0.001 is used to be
consistent with our methodology for rejecting a distribution;
the distribution is assumed to be Gaussian because the null
hypothesis isnot rejected. There is nothing special about the
2nd FFT component and these results appear representative of
most of the frequency components.

Since the Gaussian distribution matches the noise statistics
in the frequency domain, a threshold can be adopted on
the FFT coefficients to meet a false alarm constraint using
a combinatorial logic architecture, e.g. design a threshold
and declare an event when the first four FFT components
exceed the threshold. See Chapter 8 of [1] for examples of
this type of architecture. A different approach is proposed
here which combines all the FFT information in a rigorous
manner. Accepting that the real and imaginary components of
the FFT coefficients of the background signal are normally
distributed, the mean vectorµ ∈ R

128 and covariance matrix
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Fig. 5. Mahalanobis distance distribution of the sensor fusion algorithm.

Σ ∈ R
128×128 are estimated. The PIR signal is real, thus the

128 point FFT yields 65 unique complex coefficients, the first
and middle (65th) coefficients being purely real. Taking the
unique real and imaginary components and stacking them in a
vector leads to the vector inR128. After estimating the mean
and covariance values, the Mahalanobis distance is computed
as

DM (x̂) = (x̂− µ)
T
Σ−1 (x̂− µ) (1)

wherex̂ ∈ R
128 are the unique real and imaginary FFT coef-

ficients as previously described. Whenx̂ is jointly Gaussian,
the Mahalanobis distanceDM (x̂) is known to be chi-square
distributed with 128 degrees of freedom. Having a known
distribution, a threshold can be chosen on the Mahalanobis
distance to meet a false alarm constraint using the inverse
CDF. It is beneficial to design the intrusion detection algo-
rithm around the Mahalanobis distance because it has greater
sensitivity than a logical architecture and combines all the FFT
coefficient information in a consistent and probabilistic manner
(see Figure 7 discussed later). To see this, consider any logical
architecture where thresholds are placed on individual FFT
coefficients. Now suppose that the all the FFT coefficients fall
just below the all the thresholds. The logic architecture will
not detect an intrusion, but the Mahalanobis distance of such
an event will be large as the total distance as computed by
DM (x̂) will be large. Here is a summary of a preliminary
version of the detection algorithm based on a single sensor:

Algorithm 1: Compute estimatesµ and Σ on background
data (during a start of phase when conditions are controlled).
Once estimated, compute a thresholdxth to meet the false
alarm constraintα using the fact thatDM (x̂) is chi-square
distributed. For each new batch of 128 time series samples,
compute the FFT̂x and then computeDM (x̂) and declare an
intrusion if DM (x̂) > xth.

Unfortunately Algorithm 1 does not work as stated. The
Mahalanobis distance is computing a weighted energy in
the frequency domain, but by Parseval’s theorem a similar
computation in the time domain yields the same result. In the
time domain however, there is little hope of achieving a closed
form chi-squared distribution due to the non-Gaussianity of the
samples.

To address this issue, rather than using all of the FFT
coefficients to compute the Mahalanobis distance, a subset
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Fig. 6. Top: Event time series for eight testbed sensors. Bottom: The output
metric (Mahalanobis distance) of the sensor fusion algorithm and decision
threshold.

of coefficients is selected as it will be shown that this leads
to a distribution that very closely matches a chi-squared
distribution. This leads to the question of how to select this
subset. Experiments show that almost any sufficiently small
subset of FFT coefficients works in terms of yielding a chi-
squared distribution, but detectability of intrusion events could
be compromised. A reasonable subset selection criterion would
be to select the coefficients that have the most energy. Using
this idea, principal component analysis (PCA) is used to
find the subspace of FFT coefficients that describe the most
energy. The principal components that account for 95% of the
energy are used, which is nine components for the sensor time
series in the Figure 3. PCA can be performed because linear
transformations of the Gaussian distributed FFT coefficients
preserves Gaussianity. PCA also conveniently reduces the
dimension of the feature space from 128 to 9 in this case.
Theoretically the Mahalanobis distance computed on the 9
principal components should be distributed as a chi-squared
random variable with 9 degrees of freedom. Using a two-sided
Kolmogorov-Smirnov test ([13]), the null hypothesis of being a
chi-squared distribution isnot rejected at anα-level of 0.001
providing additional justification. The selection of the PCA
dimension such that at least 95% of the variance is captured
is a heuristic and future research will investigate optimizing
the subset selection method.

The system hasN sensors, which are assumed to inde-
pendently observe the environment. In the testbed, there are
N = 8 sensors. The above procedure is performed on each
of the individual sensors, and the PCA components of each
sensor are added together at the central controller to yieldthe
final statistic which is compared to a threshold to decide if an
event has occurred. This is possible because the distribution of
the sum of the PCA components is known. Here is a summary
of the sensor fusion algorithm:

Algorithm 2:On the background data set, compute the PCA



subspace of each sensor in the frequency domain that accounts
for 95% of the variance. Letβi denote the dimension of the
PCA subspace for sensori. On the background data, compute
µiPCA

∈ R
βi and ΣiPCA

∈ R
βi×βi , the PCA mean and

covariance, for each sensor. For each batch of 128 time series
samples, computêxi for each sensor, project it into the PCA
domain to producêxiPCA

and then computeDMi
(x̂iPCA

)
usingµiPCA

andΣiPCA
for each sensor. Sum the statistic from

each sensorDMtotal
=

∑N

i=1
DMi

and declare an intrusion
if DMtotal

> xth, wherexth is compute from the the PCA
statistics (see Equation 2 below).

EachDMi
is distributed as a chi-squared random variable

with βi degrees of freedom, soDMtotal
has a chi-squared dis-

tribution with βtotal =
∑N

i=1
βi degrees of freedom. Suppose

we want to achieve a false alarm rate ofα, e.g. probability of a
false alarm in a year is 0.001. LetNtime be the number of 128
sample windows that occur in the time frame of interest (e.g.
one year) and letF be chi-squared distribution function with
βtotal degrees of freedom. The thresholdxth can be computed
with the following equation:

xth = F−1

(

α
1

Ntime

)

(2)

whereF−1 is the inverse distribution function. This equation
follows from the theory of maximum order statistics ([14]).
The largest ofNtime computed Mahalanobis distances should
exceed the thresholdxth with probability α. By assumption,
the Mahalanobis distances are independent (and this essen-
tially seems to be the case), so this probability can be given
by the equation

FNtime(xth) = α. (3)

Inverting this equation yields the expression for the threshold
xth given in Equation 2.

Figure 6 shows the time series of all eight sensors and
the corresponding Mahalanobis distance and thresholdxth

for α = 0.001 for a year. It is seen that the Mahalanobis
distance exceeds the threshold during the event, indicating an
intrusion. Figure 7 scales the sensor time series from Figure
6 so that the maximum value does not exceed the voltage
threshold recommended by the manufacturer to declare an
event. Thus, none of the sensors would declare an event for
the time series in Figure 7 and therefore no decision algorithm
based on a combinatorial logic architecture would declare an
event. However, using Algorithm 2, an event is declared. This
example shows the power in coherently combining all of the
sensor time series via probabilistic models.

IV. CONCLUSION

A sensor fusion algorithm is developed to meet a false
alarm requirement. The algorithm accomplishes this by char-
acterizing the background noise statistics in the frequency
domain and projecting the frequency domain coefficients into
a lower dimensional space via PCA. The PCA dimension is
selected to capture at least 95% of the variance. The PCA
coefficients are Gaussian distributed. The decision metricis the
Mahalanobis distance computed on the PCA coefficients. The
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Fig. 7. Top: Scaled event time series. Bottom: Sensor fusion algorithm output
metric on scaled time series and decision threshold.

decision metric has a known distribution on the background
noise, a chi-squared distribution, which allows a threshold
to be computed to achieve the false alarm requirement. The
threshold is derived in a straight forward manner from the
theory of maximum order statistics.
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