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Goal:

@ Try to analyze and mitigate the worst case performance of the
intrusion detection system
Framework:

@ Assume we know the the statistical distribution of the
background signal

e Using results derived from other paper

e Sensor Fusion: Combine all sensors into a single metric -
Mahalanobis distance

e Background signal is chi-squared distributed

@ Compute the worst-case event distribution
e Assumes a cost associated with making a decision

A Different Perspective:
o False alarm constraints versus worst-case performance
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Payoff Matrix
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob ‘ Rock ‘ Paper ‘ Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Question: How should Alice and Bob play?
@ Mixed strategies!

@ Choose randomly according to some distribution

@ Alice chooses according to x and Bob chooses according to y
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob ‘ Rock ‘ Paper ‘ Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Notation:

x = [Pr[Alice = Rock], Pr[Alice = Paper], Pr[Alice = Scissors]]” € R®
y = [Pr[Bob = Rock], Pr[Bob = Paper], Pr[Bob = Scissors]|” € R®
Payoff matrix: M € R3%3

Expected Payoff = x" My
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob ‘ Rock ‘ Paper ‘ Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Define 3(x) = minx’ My and a(y) = maxx’ My
y

X

Mixed Nash Equilibrium: A pair (X,y) such that

5(X) = %"My = o (§)
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Test Bed

Sensor Module

@ Tri-axis accelerometer

@ Photo-detector

@ Passive infrared sensor
Instrumented Room

@ Placed 8 sensor modules along walls

@ Modules connected via CAN bus

Objective

o Collect background data

@ Collected data during entry
@ Develop decision algorithm to
minimize worst-case cost

e Can handle arbitrary number of

possible decisions
Matthew Pugh Sensor Fusion - Minimax Approach 5/15



Introduction Classic Example
Previous Work
Problem Statement

Previous Results

Goal: Find distribution on background data
@ Analyze distribution of frequency components
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Raw Time Series

o1 -
005 i "
£ o
2
005 "
w01k . J ; :
0 2000 4000 6000 8000 10000 onent of FFT Coelcient

ime (sec)
Spectrogram
‘et of the 2" FFT Caeffcient

coF

Power (d8)
POF

2000 4000 6000 8000
Time (sec)

" imaginary Component of FFT Coeffcient " Real Component of FFT Goeficent

@ Marginal Distributions: real and imaginary frequency
components look Gaussian
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PCA and Mahalanobis Distance
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Metric with a known distribution
@ Chi-squared distribution for Mahalanobis distance

Questions:
@ If an adversary chose the event distribution, what would it look like?
@ How could we design our algorithm to minimize the adverse effects?
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fixed distribution for Alice: 3(x) = minx” My
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o In our problem, we assume that the Mahalanobis distance
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e Bob can choose a distribution y to minimize our payoff
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The Problem

@ How does the Mahalanobis distance distribution connect with
rock, paper, scissors?
e In rock,paper, scissors, Bob tries to minimize payoff given a
fixed distribution for Alice: 3(x) = minx” My
M
o In our problem, we assume that the Mahalanobis distance

distribution is fixed
e Bob can choose a distribution y to minimize our payoff

@ We must define our payoff
o Our recourse: Alice can modify the decision algorithm

o For a given observed Mahalanobis distance value, Alice can
optimize what decision is made to maximize payoff
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Problem:

@ Every T seconds, we observe the Mahalanobis distance X
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e Sensor fusion is in the metric
@ X is either generated from background noise or an event
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@ Goal: Bound worst-case performance
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The Problem

Problem:

@ Every T seconds, we observe the Mahalanobis distance X
computed from all of the sensors

e Sensor fusion is in the metric
@ X is either generated from background noise or an event
@ Task: Determine what generated X
@ Goal: Bound worst-case performance

@ Minimax approach:

o Find worst-case event distribution
e Determine best decision to minimize cost

o Cost needs to be defined
o Cost can be subjective
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

@ Background data ~ U0, 1] = py,

@ Event data ~ Bob's choice = peyent
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

e Background data ~ U[0,1] = pyg
@ Event data ~ Bob's choice = peyent

Notation:
Decision Matrix: 7' € R?*Y where T} ; = Pr[o;| X = x]

@ Note: 2 is the number of actions, N is the number of possible
observations, «; is the i** decision, z}, is the k" possible
observed value

@ Implication: For continuous distributions, discretization is
required
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possible distributions - decide from which one

e Background data ~ U[0,1] = pyg
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Notation:
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

e Background data ~ U[0,1] = pyg
@ Event data ~ Bob's choice = peyent

Notation:
Decision Matrix: 7' € R?*Y where T} ; = Pr[o;| X = x]
Probability Matrix: P € RV*2 where P ; = Pr[X = z4|wj]

@ Note: 2 is the number of states of nature: background or
event, wj is the jth state of nature

@ First column: pyg, second column: peyent
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

e Background data ~ U[0,1] = pyg

@ Event data ~ Bob's choice = peyent
Notation:
Decision Matrix: 7' € R?*Y where T} ; = Pr[o;| X = x]
Probability Matrix: P € RV*2 where P ; = Pr[X = z4|wj]
Loss Matrix: A € R?*? where A;; = A (a]w;)

@ A has dimensions # of actions by # of states of nature

@ The loss values can be subjective!
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

e Background data ~ U[0,1] = pyg

@ Event data ~ Bob's choice = peyent
Notation:
Decision Matrix: 7' € R?*Y where T} ; = Pr[o;| X = x]
Probability Matrix: P € RV*2 where P ; = Pr[X = z4|wj]
Loss Matrix: A € R?*? where A;; = A (a]w;)
Prior probabilities on state of nature: p(w)
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

e Background data ~ U[0,1] = pyg
@ Event data ~ Bob's choice = peyent

Notation:

Decision Matrix: 7' € R?*Y where T} ; = Pr[o;| X = x]
Probability Matrix: P € RV*2 where P ; = Pr[X = z4|wj]
Loss Matrix: A € R?*? where A;; = A (a]w;)

Prior probabilities on state of nature: p(w)

Question: Given the loss matrix A, background distribution py,
and the prior probabilities p(w):

@ How would Bob select peyent to maximize loss?

@ How would Alice design T to minimize loss?

Matthew Pugh Sensor Fusion - Minimax Approach 8/15



Binary Decision

Toy Examples .
4 P Ternary Decision

Toy Example #1: Optimization Problem

Define the conditional risk as:

p(z|w;)p(w))

(
R(ailz) = Y Aaijlw;)p (wjlz) = > A(ailw;)
Z ; p(z)

Want to minimize risk: o(z) = argmin R (a;|x)
@

Define the risk as:

R= ZR a(as)|z) plas) = 17 (A - diag(p)) o (TP)) 1
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Toy Example #1: Optimization Problem

The minimax problem is

. T .
s 1 ((A - diag(p)) o (T'P)) 1
subject to pll1=1
p=>0
T>0
17T =17
pTX = Mevent
Constraints:

@ Mean constraint
@ Probability constraints
@ Can add linear constraints e.g. moments
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Toy Example #1: Optimization Problem

The minimax problem is

e D

min max 17 ((A - diag(p)) o (TP)) 1

TeRPXNpeRN
subject to pll=1
p=>0
T>0
1’7 =17

T
P X = Uevent

J

Minimax Solution: There exists a unique answer to the problem!

@ Problem must be recast using linear programming duality to
be put into convex optimization packages

@ Solution seems to be sensitive to discretization and solver
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Toy Example #1: Results

Parameters:
@ Povg ~ U[07 1])
@ [0, 1] uniformly discretized into 1000 bins
@ fieyent = 0.9
e p(event) = 0.1 =1 — p(background)

A= —500 1000
| 15 —1000
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Toy Example #1: Results
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Toy Example #2: Ternary Decision Problem

Problem:
@ Samples are drawn from two possible distributions
o Background data ~ UJ0, 1] = psg
e Event data ~ Bob's choice = peyent
@ Allow a third decision option: uncertain

@ Task: Decide which distribution sample is drawn from or
declare uncertainty

o Can be extended to arbitrary number of decisions
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Toy Example #2: Ternary Decision Problem

Parameters:
° Pbg ~ U[07 1])
@ [0, 1] uniformly discretized into 1000 bins

@ fieyent = 0.9

e p(event) = 0.1 =1 — p(background)
—100 1000

e A= 50 —500
100 —1000

o Columns: {background, event}
e Rows: {background, uncertain, event}
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Toy Example #2: Ternary Decision Problem
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Minimax Sensor Fusion: Analogy

Background Distribution

@ Chi-squared distribution for Mahalanobis distance

@ Mahalanobis distance incorporates data from all PIR sensors
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Minimax Sensor Fusion: Analogy

Background Distribution

The same problem as the toy examples:
@ Observable (Mahalanobis distance) drawn from two possible distributions
o Background Distribution ~ 2
o Event Distribution
@ How to choose which distribution the observed Mahalanobis distance
came from?
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Minimax Sensor Fusion: Parameters

Discretization:
@ Observables occur over massive scales
e Average background: 101
o Maximum event: 4.2 x 10°
@ How to discretization support?
e Optimization sensitive to support
e Feasibility - cannot have too many points
@ Our approach:

e Uniformly logarithmically spaced between 0 and
[logyo 4.2 x 107 with 50000 points
] Pr[xi] = sz (xl) - FX2 (ﬂfi—l)
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Minimax Sensor Fusion: Parameters

Parameters:

Levent = 6.674 x 10* = Empirical mean on test data
e p(event) = 1 x 1077

e Hypotheses: { No Event, Event }

@ Actions: { No Event, Uncertain, Event }

—100 1000
e A= 50 —500
100  —1000

Columns: Hypotheses
Rows: Actions
o How to select these values?
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Minimax Sensor Fusion: Results
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o Distribution on observable - x2 distribution
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Conclusion

Bound on performance
@ Minimax solution finds worst-case event distribution

@ Leveraged past work to define:

e Observable metric - Mahalanobis distance
o Distribution on observable - x2 distribution
e Metric combines information from multiple sensors

@ Determine decision policy to minimize worst-case effects
@ Flexible constraints
Issues:
@ Large observable support
e Hard for optimization tools to handle
@ Cost definition
e Subjective in nature

@ Appropriate constraints
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Conclusion

Thank You!

Any Questions?
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