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Abstract—The goal of sensor fusion is to combine the infor- Sensor 5 Time Series
mation obtained by various sensors to make better decisions. By ‘
better, it is meant that the sensor fusion algorithm provides, for
example, better detectability or lower false alarm rates compared
to decisions based upon a single sensor. This work is motivated
by combining the data gathered by multiple passive infrared
(PIR) sensors to detect intrusions into a room. Optimal decision
theoretic approaches typically include statistical models for both 0 ' . . : :
the background (non-event) data, and intrusion (event) data. o B ke 0B
Concurrent work by the author has shown that by appropriately Sensor 6 Time Series
processing multiple PIR data streams, a statistic can be computed sl ‘ ‘ ‘ ‘ ]
which has a known distribution on the background data. If the _
distribution of the statistic during an event is known, optimal %
decision procedures could be derived to perform sensor fusion. g
It is shown, however, that it is difficult to statistically model 2
the event data. This paper thus focuses on using minimax
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theory to derive the worst-case event distribution for minimizing 0 : ' ' ; ; v . :
. . . . . . . 0 10 20 30 40 50 60 70 80 90
Bayes risk. Because of this, using the minimax distribution as a Time (sec)
surrogate for the unknown true distribution of the event data
provides a lower bound on risk performance. The minimax Fig. 1. Intruder Event as Observed By Two Different Sensors.

formulation is very general and will be used to consider loss
functions, the probability of intrusions events and consider non-

bi decisions. - . .
aty decisions characteristic (ROC) curve to optimally trade-off detbdity

and false alarm rate in the binary decision problem.
Unfortunately, the event distribution, as discussed in [3]
The best way to combine information from multiple sensoiis unknown, and the above ROC curve approach to binary
and make optimal decisions is an active area of researdetection cannot be applied. Figure 1 shows the voltage time
Much work in the area of sensor fusion has shown that Isgries from two PIR sensors in our test bed during an intrusio
processing many sensors as opposed to a single sensor, bewent. It is observed that even though both sensors obdwve t
performance can be achieved such as improved detectabiligme intrusion event, the signals look quite different.sTihi
resolution, false alarm rates, etc. See for example [1], [2host likely due to the spatial distance separating the s$snso
This work is motivated by the problem of using multiple PIRand the distance and observation angle to the person emterin
sensors in a room to detect an intruder. The primary difficulthe room. Because accurately modeling the event distabuti
in approaching this problem is how to differentiate an ision  is challenging, a different approach will be consideredhis t
event from the background, or non-event. In an accompanyingrk.
work [3], it is shown that by appropriately processing th&PI This paper considers the problem of detecting a binary
signals, a statistic on the background data can be compuésent, i.e. either an intrusion or non-intrusion (backgehu
whose distribution is well known. If the distribution of theevent, but an arbitrary number of decisions are possible. Fo
statistic computed on event data were known, using batxample, in Table I, there are only two possible truth states
the event and non-event distributions with classical dietec
theory (see [4]) allows one to construct a receiver opegatin
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event or non-event, but there are three possible decisioaspended in gathering background data to accurately model
declare an event, non-event or uncertainty. In the everit thiae background statistics rather than model the evensstati
uncertainty is declared, a different action could be talk&r. which as previously mentioned is difficult. In lieu of a model
example, in the case of uncertainty, perhaps the systend cotlle objective of this work is to compute the worst-case event
begin using a more power intensive sensor to try to determidistribution for the computed statistic, described in thextn
the true state of the room. In this toy example, power is savedction, from a Bayes risk perspective.
by leaving the power intensive sensor in a default off staga K d -
until its help is required. This example demonstrates aatgrn Background Statistics
decision problem, but in this work, an arbitrary number of This subsection describes the results found in [3], which
decisions can be considered. are used to compute a statistic on the background data with
Additionally, this work considers a cost associated with known probability distribution. In [3], a frequency domai
each truth/decision pair (e.g. each element in Table I) anc@Bproach is taken. Each block of 128 quantized voltage
prior probability of occurrence for each truth state to makgamples is converted with the FFT into the frequency domain.
the problem as general as possible. For example the cbBe real and imaginary parts of each of the FFT coefficients
associated with a missed detection can differ from the cdfpears to be Gaussian. Because the PIR signal is real, the
associated with a false alarm. Also, the probability of ah28 point FFT has 65 unique complex coefficients — the first
event is most likely much lower than the probability of n@nd middle ¢5'") coefficients are purely real. The real and
event. A Bayes risk formulation is used which accounts fdinaginary parts of the unique coefficients are stacked tatere
the costs associated with each truth/decision pair andrthe pa vectorx € R'?®. During a training phase (or in this case
probability of the truth states. With the multi-decisiony@a 0n the collected test data), sensaomputes the mean vector
risk defined, and assuming the background distribution doun: € R'*® and covariance matrix; € R'***!?% of x. Using
in [3], an optimization problem can be formulated to find th&rincipal Component Analysis (PCA) (see [7]), the subspace
worst-case event distribution — the minimax distributiseq for each sensor that contains 95% of the variance is fourtd. Le
[5], [6]). Here, worst-case event distribution means ifrthis  3: be the dimension of this PCA subspace for tfesensor.
an adversary whose goal is to maximize the Bayes risk, thée mean and covariance in this subspace, denaoted, and
adversary would choose the minimax distribution. Designin=irc ., IS then computed for each sensor.
the detection system based on the worst-case event digiribu  For this work it is assumed that the statistics are stationar

thus provides a lower bound on the Bayes risk performangeer the duration of the experiment (in reality the backgebu
of the system. statistics appear to drift slowly over time, but this issud w

not be addressed here). Thus, with the learned values of
Wi Xiiee, and ;.. ., the background data is no longer
A. Data Collection needed. For each sensor, each new block of 128 time series
The data used to characterize the background statisti@mples is converted to the frequency domain and the 128
(described in more detail in Section II-B) is collected inique coefficients are extracted as. The coefficientsx;
a rectangular shielded room. The shielded room is instrate then projected into the PCA subspace mentioned above,
mented with eight custom designed sensor modules whifPducingx;.., € R%. Eachx;,., is used to compute
are mounted along the walls. Each sensor module contafds:,, the Mahalanobis distance (see [7]) at sensatefined
a Kionix KXRB5-2050 tri-axis accelerometer, a Marktect@s follows:
5052TD photo diode and a Panasonic AMN24112 PIR sensgy. .. _ o o Ts—1 (4 o
This paper will only consider the PIR channel on each modulgMi Kirca) = Kiros = Hirca)” Bipes Kircs = Hirca),
Each PIR sensor has a Fresnel lens. The sensor moduiere the superscripf’ denotes transpose. With,,, com-
connect to each other via a CAN bus, and one moduypeited for each sensor, at some centralized controller,uire s
designated as the “mother node” connects to a laptop via Uy statisticD,y,,,., = S, Dy, is calculated, wher@V is
to record the data. the number of sensors. The key result in [3] is thay, ,,, is
The PIR voltage signal for each module lies between 0 aadchi-squared random variable with,;,; = Ef;l B; degrees
3.3 volts. The raw analog voltage signal is uniformly scalaf freedom. For the remainder of this paper, we will assume
quantized with a 12-bit quantizer at a rate of 100 Hz. Ashat Dy, ,,, is computed at a central controller for each 128
mentioned in [3], lower quantization rates were considerdaiock of time series samples and that the background statist
but yielded poor performance in terms of characterizing ttege chi-squared distributed with;,:,; degrees of freedom.
background statistics. If the distribution of Dy, ,., during an event were known,
Background data is collected over the course of seveitimal decision procedures could be derived. Because the
days in the closed and empty shielded room. Event datadistribution of D, , , during an event is unknown, the goal
collected for simple intrusions such as a person opening tbiethis work is to determine the worst-case distribution for
shielded room door, walking into and about the room, exiting,;,; during an event to maximize the Bayes risk (defined in
the room and closing the door. The time series in Figuf&ection IIl), which can then be used to compute lower bounds
1 is captured from such an intrusion event. More effort ish system performance. Note that the sensor fusion aspect

[1. DATA COLLECTION AND BACKGROUND STATISTICS



of the problem is in the computation of the statisti,, ,,, This decision procedure is called Bayes’ decision rule, and
which incorporates the individual statistid3,,,, computed at the overall minimum risk achieved in Equation 2 by using
each individual sensor to make a decision. this decision rule is called the Bayes risk, denoted?as

Aside: The above procedure may look computationally com- In order to compute the Bayes decision rule in Equation 3,
plex. With the assumption of stationarity of the backgrounithe posterior distributiorp(w;|z) must be computed. Using
statistics, all of the key components,>;, i, and¥;.., Bayes’ rule, the posterior can be rewritten as
can be computed offline. The only computations required in p(a|w;)p(w;)

real-time are an FFT, the computation of the quadratic form p(wjlz) = (4)
Dy,, and finally summing the values db,,, . p()
where the normalization term(z) is given by
[1l. BAYES RIsK m
This section describes Bayes risk and how it relates to the p(z) = Z = p(z|w;)p(w;), (5)
sensor fusion problem under consideration. The discussion j=1

of Bayes risk is motivated by the discussion in [7]. Lefyherem is the number of states of nature. Bayes’ rule coverts
wj,j € {1,2} be the true state of nature, wherg denotes the computation of the posterigiw;|z) into a computation
there is no event and, means there is an event. To easgwolving the likelihoodp(z|w;) and the prior distribution of
notation, equivalently, = w-z andw; = wy whereE stands  the true states of naturg(w;). It is assumed that the prior
for “event.” This work focuses on the binary case where thefﬂobabilitieSp(wj) are assigned by a subject matter expert.
are only two states of nature, but this can be easily extendgélcause only binary states are being considered (event and
to an arbitrary number of states. Lgt4,...,a,} denote the non-event)p(wg) = 1 — p(w-z), o only a single probability

a possible decisions or actions of the sensor fusion algarithneeds to be defined — either the probability of an event or
For example, in the binary decision problem= 2, and in the the probability of a non-event. Additionally, a subject teat
example mentioned in Section | where there are three pessikpert is required to assign the values to the loss function
decisions, the third being deciding “uncertainty’= 3. Let )(q,|w;), e.g. the cost of false alarms, missed detections, etc.
Aailw;) be the loss function, or cost, associated with takingjith the assumption that the prigr(w;) and loss function
actiona; when the true state of natureds. For example, in - \(q,|w;,) are known, the remaining unknowns are the likeli-
the binary decision problem let, be the action of declaring hood functiongy(z|w;). From our discussion in Section I1-B,
w; as the true state of nature ang be the action of declaring it ijs assumed thai(z|w-z) has a chi-squared distribution with
wo the true state of nature. TheX(as|w:) is the cost of a g, . . degrees of freedom. Thus, the only remaining unknown
false alarm. Lastly, lep(w;|x) be the posterior distribution of tg solve for the Bayes decision rule is the likelihogt|ws),

the true state of nature given an observationTo simplify  the unknown distribution ofD,, . during an event. The
notation, in this paper is the observed statisti®ys,,.,, minimax distribution found as the solution to an optimigati

computed every 128 time samples. problem described in the next section will be used as a
Having defined the aforementioned quantities, the conjyrrogate for the unknown true likelihood.

tional risk is defined as
. IV. MINIMAX SOLUTION FOR THELIKELIHOOD
R(ay|x) :ZA(ai|wj)p(wj\x). 1) The likelihood function given an evenp(z|wg) is un-
j=1 known, so it can be optimized. Here the likelihood will be
the minimax distribution, that is the distribution choseyn b
an adversary to maximize the risk from Equation 2, i.e. to
minimize the performance of the system. While it is increglibl
unlikely that the true likelihoodp(z|wg) is the minimax
R= /R(a(:v)lx)p(w)dx (2)  distribution, it allows lower bounds on the performanceha t
system to be derived since it is the most difficult distribati
wherea(z) is the action taken given that is observed and From a game-theoretic perspective, the minimax distratuti
p(x) is the probability ofz being observed. The functian(z) s a saddle point so that any other likelihood function yéeld
is to be designed such that the risk defined in Equationpiter performance.
is minimized. Becausg(x) is always non-negative, Equation  npych of the minimax problem formulation will follow that
2 is minimized by minimizing the conditional risk given ingescribed in [5]. Because a convex optimization progranh wil
Equation 1 for each value of. Thus,a(z) is given by solving pe ysed to solve for the minimax distribution, the probapili

The above equation quantifies the risk in making decisipn
given thatx is observed. The overall expected loss is th
given as

the following minimization problem: distribution must be discretized rather than be defined en th
a(z) = arg minR(a;|z) real line. Let N be the length of the support and ¢ RY
o be a vector whose components are the locations of probabilit
c mass. All of the probabilities, likelihoods and posteriand
= argmin Y Mai|w;)p(w;|z). (3) be defined with respect to this common suppertBecause

o

J=1 of this discretization, some modifications are requiredthia



continuous casey(z|w-g) is chi-squared, but the discretizedvariables — the decision matri¥' € R**" and the event
version will be defined as: probability distributionp € RY. Because the non-event state
is indexed asvy, the first column of the probability matri®
pEilw-p) = Fe (i) = P (i) ©) given in Equation 8 is the discretized cf?i-square)(; distitiou
where F, 2 (-) is the CDF of the chi-squared distribution withand the second column is the optimization variapleFor
Brotar degrees of freedom. Thus this discretization assigagnsistency with our observed event data that was collgated
to x; probability mass equal to the the probability of thénean constrainteven:Will be placed on the distributiop, that
chi-squared random variabl& € (x;_1,z;]. In Equation 6, is the event distribution will be forced to have a mean equal
zo is defined as—co so thatF,:(zo) = 0. This choice of to that observed on the collected event data. More will be
discretization is chosen for ease and other methods may Sséd about possible constraints later. The minimax opation
used. The discretization also effects the evaluation &f ais problem can be written as
defined in Equation 2. Now, rather than being an integral, the min max 17 ((A-diagp)) o (TP)) 1

risk will be a summation as defined by TERPXNpERN
subject to  pTx = flevent
T
R=Y R(a(x;)|z)p(z; 7 pl=1 . (10
Z |zi)p(s). @ b0
. . T>0
For notation, whenever a subscript suchras used, the value 177 — 17

is discrete and refers to th&" element of the suppot.

Having explained the discretization procedure, defithe The objective function is the reformulated Bayes risk from
RN ™ as the matrix whosék, j) element is the probability Equation 9, the first constraint is the imposed mean comstrai
that the observation random variah} takes the valuer;, the next two inequalities ensure thatis a valid probability
given the true state of nature is;, i.e. distribution and the last two constraints guarantee that th

columns of the decision matriX' are valid probabilities, e.g.
Prj = Pr(X = aplw;]. ®) have non-negative values and sum to one. The statement of
Recall that the observation is the metric Dyy,,,,, is a the optimization problem gives a nice game theoretic inter-
continuous random variable but will be discretizedatpif pretation to the minimax problem. An adversary is trying to
x € (w;_1,x;]. Since there are only two states of nature anghoose an event distributignto maximize the Bayes risk and
the length of the support i&7, P € RV*2, Also recall from the algorithm designer is trying to choose a decision matrix
the beginning of Section IlI that there arepossible action 7' to minimize the risk. The optimization problem as stated in
{ai,...,a,}. Define the decision matrif’ € R**Y as the Equation 10 cannot be directly plugged into a solver. Furthe
matrix having elements manipulations are required to get it into the proper forme Th
goal is to be able to write the optimization problem as a gngl
tiw = Priai]X =], minimization problem, i.e. convert the maximization prerbl
i.e. the probabmty of tak|ng actiomi given that Tk is into a minimization prOblem. This can be achieved by ul’lngI
observed. Note that the action that is taken can be randdmizZ&e duality theory of linear programming ([5], [6]).
If the entries of T are either0 or 1, then the decision is First, the risk can again be rewritten as
deterministic. Finally, define the detection probabilityatnix
D = TP € R**2 where each element can be interpreted as (A - diag(p)) o (T'P)) 1
= trace((A -diag(p)) TP)

Di,j =Pr [ai\wj] s
_ 1T (T (A . i
i.e. the probability of taking action; given the true state of =1 (T (A - diagp)) OTP) 1
naturew;. = vec(T" (A - diag(p)))” vedP)
Recall from Section Il the los&(«;|w;) and define the loss
( | J) vec(TT A-diag(p)))T [ pnon-event:|
vec(

matrix A € R**2 as the matrix with the following elements: p

Aij = Mailw)). (T (A-diagp)))’ B (11)

With the preceding definition, the risk can be rewritten as p
non-event H
and pnon-event IS

T .
R =17 ((A-diagp)) o (TP)) 1, ©) the discretized chi-squared distribution. Introduce thwi-o
where diagp) € R?*2 is a diagonal matrix with diagonal ele-mization variablep € R2¥. This variable differs from the
ments from the prior distributiop(w;), 1 € R* is a vector of optimization variablep in Equation 10 because represented
ones and denotes Hadamard (element-wise) multiplicationthe unknown event distribution bup will have both the
All of these definition allow for the minimax optimization non-event and event distribution unknown. The knowledge of
problem to be easily stated in terms of matrix operations. the non-event distribution will be incorporated as an eigual
the minimax optimization problem, there are two optimiaati constraint in the reformulated optimization problem. Néet

where we have defineg =



c = vec(T7 - (A -diagp))) and letA € RWW+2>2N matrix Minimax Distribution

deﬁned as i f:; ' ' ' ' Cr;i—Squared
Iy | oy .
A= 01><N | X 5 i |
777777 |———— - I
O1xnv ' Lixn £ g0l L
Q
[5]
whereIy € RV*N is the identity matrix,0y € RN*N is a g T ‘ ‘
matrix of zeros and); y and1;yy are row vectors of zeros 10° 10' 10° 10° 10* 10° 10°
and ones respectively. Lastly, the constraint values iraion Stpport ~ Log Scale
10 are captured b¥p, the constraint vector, defined as o ‘ ' ———
= e Decision: No Event
3 Decision: Uncertain
Pnon-event N § ————— Decision: Event
b - ‘llevent 6 R (12) % 0.5
| Al
The inclusion ofppon-eventincorporates our knowledge of the < . . . .
. . . . . e 0 1 2 3 4 5 6
background distribution. With the previous definitions and 10 10 10 10 10 10 10

. . . Support - Log Scale
using the equational form of a linear program (see [6]) or

standard form linear program (see [5]), the maximizationg. 2. Top: Knowny? background distribution and minimax distribution.

problem in 10 can be written as Bottom: Decision probabilities versus observations.
max c'p
f)ER2N
subjectto Ap =b - (13) and Mosek [9] as the solver. Other solvers were attempted,
p>0 such as SDPT3 [10] and SeDuMi [11], encountered numerical
B issues.

Introducing the dual variablg € RV*2, the dual problem to  The formulation in the previous section is very general
the maximization problem in Equation 13 can be written asand to solve for the minimax distribution, values have to be

min by assigned to the problem parameters. The values used for the
yERN+2 results to shown will now be discussed. There will be two
subjectto ATy —c>0 - (14) states of naturen{ = 2), either an event or no event. There will
y=0 be three actionsa(= 3), either declaring an event, declaring

Putting everything together, the optimization problem qug- @ non-event, or declaring uncertqinty. The suppprteeds to
tion 10 can be rewritten as a single minimization problefe defined and actually plays an important role in the saiutio

which can be plugged into a solver: to the optimization problem. Ideally, the more support ®in
. T the better, as then the discrete distributions better apiaie
TGRWI?,I;IGRNH bly the continuous distributions. However, the more points dina
subjectto ATy —c>0 (15) used, the more optimization variables and thus the more com-
T>0 putational power is needed. The supperthat is considered
15.,17=1%,. will have 5 x 10* points logarithmically spaced d, 10°]. The

- o 4 .
The optimization problems in Equations 10 and 15 providgnplrlcal event mean was Set fQven = 6.67 x 10%, which

a template for the types of constraints that can be placed' the mean measured on the test data. The prior probability

. BN .
the minimax distribution. For example, moment constraamts otnant event is set t@(iverglb _thlol =1 tp(no ezj/gn), €
the minimax distribution can be easily handled by adding ff/eN's are very rare. Lastly, the 10ss matrix used 1s

constraintp” x™ = M,,, wherex" means raising each element —~100 1000
of x to then" power and)M,, is then!” moment constraint. A=| 5  -500 |,
Support constraints can be added to restrict where the rainim 100 —1000

distribution has probability mass by zeroing out columnthi .

A. Additionally, rather than have equality constraints;Qn where the first column corresponds to “no event”, the second
or the known background distribution, box constraints can l§olumn to an “event”, first row for declaring no “event’,
used to constrain the values to an interval. These are justgeond row for declaring “undecided” and the third row for
few examples of possible constraints. Indeed, any constrafléclaring an “event.” The risk is to be minimized, so negativ

that is linear inp can easily be incorporated. numbers can be viewed as a reward.
The top plot in Figure 2 shows the know? background
V. RESULTS distribution for the test data which has 101 degrees of tieed

Having formulated the optimization problem (which is and the minimax distribution which is the solution to the
linear program) in Equation 15, the minimax distributiom caoptimization problem. Because @ distribution has a well
be solved by using a convex solver. The results in this sectibnown density, the probability mass becomes astronomicall
were generated in MATLAB using YALMIP [8] as the parsesmall over most of the support as observed in the figure.
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can be undertaken and decision algorithm can be designed.
Specifically, the samples from PIR sensors are processed in
a way developed in [3] to produce a metric with known
distribution when there is no event. A binary state of natsre
analyzed where each observed value of the metric was either
generated by an event or the background. Although the state
of nature was fixed to be binary, the framework is sufficiently
general to allow for any number of states. A framework is
developed such that an arbitrary number of decisions ocoreti

a can be taken depending on the observed value of the metric.
An expert is assumed to assign a loss to each combination of
actions and states of nature and the prior probabilitiesaohe
state of nature are assumed known or given by an expert.
With this knowledge, a minimax optimization problem is
constructed to find the minimax distribution for the compute
metric during an event. The minimax distribution is the most
difficult distribution in the sense that it maximizes thekris

Fig. 3. Left: ROC Curve assuming the minimax distribution as ¢lent
distribution on a linear scale. Right: Same but with a loganit scale.

Thus, using the minimax distribution for analysis provides

lower bound for the risk performance of the system.

Notice that the minimax distribution tries to place most of
it's mass in the same area as the background distribution $4
as to try to produce maximum confusion. There is also somﬁ]
probability mass at the right end of the support so that thg;
mean constraint is met. The bottom plot in Figure 2 shows the
rows of the decision matriX’ which represent that probability 4]
of taking an action for a given observed value of the support
Notice that for “typical” values of the background distrilawn,  [5]
the algorithm declares a non-event with probability oner. Fo[a]
most of the support where both the background and minimax
probabilities have low probability, the algorithm essaityi  [7]
picks one of the three decisions (event, non-event, uringrja 8]
with equal probability.

As mentioned in the Section I, traditional decision theioret
analysis is based on knowledge of the distributions of &l th o]
events (in this case event and non-event) of interest. In gg
accompanying work [3], a threshold was chosen based solely
on the non-event distribution since the event distribution
unknown. Revisiting the binary hypothesis problem, one can
use the minimax distribution, which is the worst case distri
bution, as a proxy event distribution and compute classical
metrics such as a ROC curve. Figure 3 shows the ROC curve
using the minimax distribution computed in the considered
problem. This is an example of what can be done, but in
this case the results should be taken with a grain of salt.
The problem considered is fundamentally a ternary decision
problem so the minimax distribution found would not be the
same minimax distribution found by solving a binary dedisio
problem.Regardless, it may be useful to use the minimax
approach to use the minimax distribution as a surrogatehfor t
unknown event distribution to perform traditional hypatlse
testing analyses such as a ROC curve.

VI. CONCLUSION

This work considers how to generate a surrogate distributio
for the unknown event distribution so that a risk based asigly
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