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Abstract—The goal of sensor fusion is to combine the infor-
mation obtained by various sensors to make better decisions. By
better, it is meant that the sensor fusion algorithm provides, for
example, better detectability or lower false alarm rates compared
to decisions based upon a single sensor. This work is motivated
by combining the data gathered by multiple passive infrared
(PIR) sensors to detect intrusions into a room. Optimal decision
theoretic approaches typically include statistical models for both
the background (non-event) data, and intrusion (event) data.
Concurrent work by the author has shown that by appropriately
processing multiple PIR data streams, a statistic can be computed
which has a known distribution on the background data. If the
distribution of the statistic during an event is known, optimal
decision procedures could be derived to perform sensor fusion.
It is shown, however, that it is difficult to statistically model
the event data. This paper thus focuses on using minimax
theory to derive the worst-case event distribution for minimizing
Bayes risk. Because of this, using the minimax distribution as a
surrogate for the unknown true distribution of the event data
provides a lower bound on risk performance. The minimax
formulation is very general and will be used to consider loss
functions, the probability of intrusions events and consider non-
binary decisions.

I. I NTRODUCTION

The best way to combine information from multiple sensors
and make optimal decisions is an active area of research.
Much work in the area of sensor fusion has shown that by
processing many sensors as opposed to a single sensor, better
performance can be achieved such as improved detectability,
resolution, false alarm rates, etc. See for example [1], [2].
This work is motivated by the problem of using multiple PIR
sensors in a room to detect an intruder. The primary difficulty
in approaching this problem is how to differentiate an intrusion
event from the background, or non-event. In an accompanying
work [3], it is shown that by appropriately processing the PIR
signals, a statistic on the background data can be computed
whose distribution is well known. If the distribution of the
statistic computed on event data were known, using both
the event and non-event distributions with classical detection
theory (see [4]) allows one to construct a receiver operating
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Fig. 1. Intruder Event as Observed By Two Different Sensors.

characteristic (ROC) curve to optimally trade-off detectability
and false alarm rate in the binary decision problem.

Unfortunately, the event distribution, as discussed in [3],
is unknown, and the above ROC curve approach to binary
detection cannot be applied. Figure 1 shows the voltage time
series from two PIR sensors in our test bed during an intrusion
event. It is observed that even though both sensors observe the
same intrusion event, the signals look quite different. This is
most likely due to the spatial distance separating the sensors
and the distance and observation angle to the person entering
the room. Because accurately modeling the event distribution
is challenging, a different approach will be considered in this
work.

This paper considers the problem of detecting a binary
event, i.e. either an intrusion or non-intrusion (background)
event, but an arbitrary number of decisions are possible. For
example, in Table I, there are only two possible truth states,

Truth/Decision Non-Event Uncertain Event
Non-Event Correct Decision ? Missed Detection

Event False Positive ? Correct Decision

TABLE I
POSSIBLEOUTCOMES OFBINARY DECISION



event or non-event, but there are three possible decisions:
declare an event, non-event or uncertainty. In the event that
uncertainty is declared, a different action could be taken.For
example, in the case of uncertainty, perhaps the system could
begin using a more power intensive sensor to try to determine
the true state of the room. In this toy example, power is saved
by leaving the power intensive sensor in a default off state
until its help is required. This example demonstrates a ternary
decision problem, but in this work, an arbitrary number of
decisions can be considered.

Additionally, this work considers a cost associated with
each truth/decision pair (e.g. each element in Table I) and a
prior probability of occurrence for each truth state to make
the problem as general as possible. For example the cost
associated with a missed detection can differ from the cost
associated with a false alarm. Also, the probability of an
event is most likely much lower than the probability of no
event. A Bayes risk formulation is used which accounts for
the costs associated with each truth/decision pair and the prior
probability of the truth states. With the multi-decision Bayes
risk defined, and assuming the background distribution found
in [3], an optimization problem can be formulated to find the
worst-case event distribution – the minimax distribution (see
[5], [6]). Here, worst-case event distribution means if there is
an adversary whose goal is to maximize the Bayes risk, the
adversary would choose the minimax distribution. Designing
the detection system based on the worst-case event distribution
thus provides a lower bound on the Bayes risk performance
of the system.

II. DATA COLLECTION AND BACKGROUND STATISTICS

A. Data Collection

The data used to characterize the background statistics
(described in more detail in Section II-B) is collected in
a rectangular shielded room. The shielded room is instru-
mented with eight custom designed sensor modules which
are mounted along the walls. Each sensor module contains
a Kionix KXRB5-2050 tri-axis accelerometer, a Marktech
5052TD photo diode and a Panasonic AMN24112 PIR sensor.
This paper will only consider the PIR channel on each module.
Each PIR sensor has a Fresnel lens. The sensor modules
connect to each other via a CAN bus, and one module
designated as the “mother node” connects to a laptop via USB
to record the data.

The PIR voltage signal for each module lies between 0 and
3.3 volts. The raw analog voltage signal is uniformly scalar
quantized with a 12-bit quantizer at a rate of 100 Hz. As
mentioned in [3], lower quantization rates were considered
but yielded poor performance in terms of characterizing the
background statistics.

Background data is collected over the course of several
days in the closed and empty shielded room. Event data is
collected for simple intrusions such as a person opening the
shielded room door, walking into and about the room, exiting
the room and closing the door. The time series in Figure
1 is captured from such an intrusion event. More effort is

expended in gathering background data to accurately model
the background statistics rather than model the event statistics,
which as previously mentioned is difficult. In lieu of a model,
the objective of this work is to compute the worst-case event
distribution for the computed statistic, described in the next
section, from a Bayes risk perspective.

B. Background Statistics

This subsection describes the results found in [3], which
are used to compute a statistic on the background data with
a known probability distribution. In [3], a frequency domain
approach is taken. Each block of 128 quantized voltage
samples is converted with the FFT into the frequency domain.
The real and imaginary parts of each of the FFT coefficients
appears to be Gaussian. Because the PIR signal is real, the
128 point FFT has 65 unique complex coefficients – the first
and middle (65th) coefficients are purely real. The real and
imaginary parts of the unique coefficients are stacked to create
a vectorx̂ ∈ R

128. During a training phase (or in this case
on the collected test data), sensori computes the mean vector
µi ∈ R

128 and covariance matrixΣi ∈ R
128×128 of x̂. Using

Principal Component Analysis (PCA) (see [7]), the subspace
for each sensor that contains 95% of the variance is found. Let
βi be the dimension of this PCA subspace for theith sensor.
The mean and covariance in this subspace, denotedµiPCA

and
ΣiPCA

, is then computed for each sensor.
For this work it is assumed that the statistics are stationary

over the duration of the experiment (in reality the background
statistics appear to drift slowly over time, but this issue will
not be addressed here). Thus, with the learned values of
µi,Σi,µiPCA

and ΣiPCA
, the background data is no longer

needed. For each sensor, each new block of 128 time series
samples is converted to the frequency domain and the 128
unique coefficients are extracted asx̂i. The coefficientsx̂i

are then projected into the PCA subspace mentioned above,
producing x̂iPCA

∈ R
βi . Each x̂iPCA

is used to compute
DMi

, the Mahalanobis distance (see [7]) at sensori, defined
as follows:

DMi
(x̂iPCA

) = (x̂iPCA
− µiPCA

)
T
Σ−1

iPCA
(x̂iPCA

− µiPCA
) ,

where the superscriptT denotes transpose. WithDMi
com-

puted for each sensor, at some centralized controller, the sum-
mary statisticDMtotal

=
∑N

i=1 DMi
is calculated, whereN is

the number of sensors. The key result in [3] is thatDMtotal
is

a chi-squared random variable withβtotal =
∑N

i=1 βi degrees
of freedom. For the remainder of this paper, we will assume
thatDMtotal

is computed at a central controller for each 128
block of time series samples and that the background statistics
are chi-squared distributed withβtotal degrees of freedom.
If the distribution ofDMtotal

during an event were known,
optimal decision procedures could be derived. Because the
distribution ofDMtotal

during an event is unknown, the goal
of this work is to determine the worst-case distribution for
βtotal during an event to maximize the Bayes risk (defined in
Section III), which can then be used to compute lower bounds
on system performance. Note that the sensor fusion aspect



of the problem is in the computation of the statisticDMtotal

which incorporates the individual statistics,DMi
, computed at

each individual sensor to make a decision.
Aside: The above procedure may look computationally com-

plex. With the assumption of stationarity of the background
statistics, all of the key componentsµi,Σi,µiPCA

andΣiPCA

can be computed offline. The only computations required in
real-time are an FFT, the computation of the quadratic form
DMi

and finally summing the values ofDMi
.

III. B AYES RISK

This section describes Bayes risk and how it relates to the
sensor fusion problem under consideration. The discussion
of Bayes risk is motivated by the discussion in [7]. Let
ωj , j ∈ {1, 2} be the true state of nature, whereω1 denotes
there is no event andω2 means there is an event. To ease
notation, equivalentlyω1 = ω¬E andω2 = ωE whereE stands
for “event.” This work focuses on the binary case where there
are only two states of nature, but this can be easily extended
to an arbitrary number of states. Let{α1, . . . , αa} denote the
a possible decisions or actions of the sensor fusion algorithm.
For example, in the binary decision problema = 2, and in the
example mentioned in Section I where there are three possible
decisions, the third being deciding “uncertainty”,a = 3. Let
λ(αi|ωj) be the loss function, or cost, associated with taking
actionαi when the true state of nature isωj . For example, in
the binary decision problem letα1 be the action of declaring
ω1 as the true state of nature andα2 be the action of declaring
ω2 the true state of nature. Thenλ(α2|ω1) is the cost of a
false alarm. Lastly, letp(ωj |x) be the posterior distribution of
the true state of nature given an observationx. To simplify
notation, in this paperx is the observed statisticDMtotal

computed every 128 time samples.
Having defined the aforementioned quantities, the condi-

tional risk is defined as

R(αi|x) =
c

∑

j=1

λ(αi|ωj)p(ωj |x). (1)

The above equation quantifies the risk in making decisionαi

given thatx is observed. The overall expected loss is then
given as

R =

∫

R(α(x)|x)p(x)dx (2)

whereα(x) is the action taken given thatx is observed and
p(x) is the probability ofx being observed. The functionα(x)
is to be designed such that the risk defined in Equation 2
is minimized. Becausep(x) is always non-negative, Equation
2 is minimized by minimizing the conditional risk given in
Equation 1 for each value ofx. Thus,α(x) is given by solving
the following minimization problem:

α(x) = argmin
αi

R(αi|x)

= argmin
αi

c
∑

j=1

λ(αi|ωj)p(ωj |x). (3)

This decision procedure is called Bayes’ decision rule, and
the overall minimum risk achieved in Equation 2 by using
this decision rule is called the Bayes risk, denoted asR∗.

In order to compute the Bayes decision rule in Equation 3,
the posterior distributionp(ωj |x) must be computed. Using
Bayes’ rule, the posterior can be rewritten as

p(ωj |x) =
p(x|ωj)p(ωj)

p(x)
(4)

where the normalization termp(x) is given by

p(x) =
m
∑

j=1

= p(x|ωj)p(ωj), (5)

wherem is the number of states of nature. Bayes’ rule coverts
the computation of the posteriorp(ωj |x) into a computation
involving the likelihoodp(x|ωj) and the prior distribution of
the true states of naturep(ωj). It is assumed that the prior
probabilitiesp(ωj) are assigned by a subject matter expert.
Because only binary states are being considered (event and
non-event)p(ωE) = 1− p(ω¬E), so only a single probability
needs to be defined – either the probability of an event or
the probability of a non-event. Additionally, a subject matter
expert is required to assign the values to the loss function
λ(αi|ωj), e.g. the cost of false alarms, missed detections, etc.
With the assumption that the priorp(ωj) and loss function
λ(αi|ωj) are known, the remaining unknowns are the likeli-
hood functionsp(x|ωj). From our discussion in Section II-B,
it is assumed thatp(x|ω¬E) has a chi-squared distribution with
βtotal degrees of freedom. Thus, the only remaining unknown
to solve for the Bayes decision rule is the likelihoodp(x|ωE),
the unknown distribution ofDMtotal

during an event. The
minimax distribution found as the solution to an optimization
problem described in the next section will be used as a
surrogate for the unknown true likelihood.

IV. M INIMAX SOLUTION FOR THEL IKELIHOOD

The likelihood function given an event,p(x|ωE) is un-
known, so it can be optimized. Here the likelihood will be
the minimax distribution, that is the distribution chosen by
an adversary to maximize the risk from Equation 2, i.e. to
minimize the performance of the system. While it is incredibly
unlikely that the true likelihoodp(x|ωE) is the minimax
distribution, it allows lower bounds on the performance of the
system to be derived since it is the most difficult distribution.
From a game-theoretic perspective, the minimax distribution
is a saddle point so that any other likelihood function yields
better performance.

Much of the minimax problem formulation will follow that
described in [5]. Because a convex optimization program will
be used to solve for the minimax distribution, the probability
distribution must be discretized rather than be defined on the
real line. LetN be the length of the support andx ∈ R

N

be a vector whose components are the locations of probability
mass. All of the probabilities, likelihoods and posteriorswill
be defined with respect to this common supportx. Because
of this discretization, some modifications are required. Inthe



continuous case,p(x|ω¬E) is chi-squared, but the discretized
version will be defined as:

p(xi|ω¬E) = Fχ2(xi)− Fχ2(xi−1) (6)

whereFχ2(·) is the CDF of the chi-squared distribution with
βtotal degrees of freedom. Thus this discretization assigns
to xi probability mass equal to the the probability of the
chi-squared random variableX ∈ (xi−1, xi]. In Equation 6,
x0 is defined as−∞ so thatFχ2(x0) = 0. This choice of
discretization is chosen for ease and other methods may be
used. The discretization also effects the evaluation of risk as
defined in Equation 2. Now, rather than being an integral, the
risk will be a summation as defined by

R =

N
∑

i

R(α(xi)|xi)p(xi). (7)

For notation, whenever a subscript such asxi is used, the value
is discrete and refers to theith element of the supportx.

Having explained the discretization procedure, defineP ∈
R

N×m as the matrix whose(k, j)th element is the probability
that the observation random variableX takes the valuexk

given the true state of nature iswj , i.e.

pk,j = Pr [X = xk|ωj ] . (8)

Recall that the observationx is the metric DMtotal
is a

continuous random variable but will be discretized toxi if
x ∈ (xi−1, xi]. Since there are only two states of nature and
the length of the support isN , P ∈ R

N×2. Also recall from
the beginning of Section III that there area possible action
{α1, . . . , αa}. Define the decision matrixT ∈ R

a×N as the
matrix having elements

ti,k = Pr [αi|X = xk] ,

i.e. the probability of taking actionαi given that xk is
observed. Note that the action that is taken can be randomized.
If the entries ofT are either0 or 1, then the decision is
deterministic. Finally, define the detection probability matrix
D = TP ∈ R

a×2 where each element can be interpreted as

Di,j = Pr [αi|ωj ] ,

i.e. the probability of taking actionαi given the true state of
natureωj .

Recall from Section III the lossλ(αi|ωj) and define the loss
matrix Λ ∈ R

a×2 as the matrix with the following elements:

Λi,j = λ(αi|ωj).

With the preceding definition, the risk can be rewritten as

R = 1T ((Λ · diag(p)) ◦ (TP ))1, (9)

where diag(p) ∈ R
2×2 is a diagonal matrix with diagonal ele-

ments from the prior distributionp(ωi), 1 ∈ R
a is a vector of

ones and◦ denotes Hadamard (element-wise) multiplication.
All of these definition allow for the minimax optimization

problem to be easily stated in terms of matrix operations. In
the minimax optimization problem, there are two optimization

variables – the decision matrixT ∈ R
a×N and the event

probability distributionp ∈ R
N . Because the non-event state

is indexed asω1, the first column of the probability matrixP
given in Equation 8 is the discretized chi-squared distribution
and the second column is the optimization variablep. For
consistency with our observed event data that was collected, a
mean constraintµevent will be placed on the distributionp, that
is the event distribution will be forced to have a mean equal
to that observed on the collected event data. More will be
said about possible constraints later. The minimax optimization
problem can be written as

min
T∈Rp×N

max
p∈RN

1T ((Λ · diag(p)) ◦ (TP ))1

subject to pTx = µevent

pT1 = 1
p ≥ 0
T ≥ 0
1TT = 1T

. (10)

The objective function is the reformulated Bayes risk from
Equation 9, the first constraint is the imposed mean constraint,
the next two inequalities ensure thatp is a valid probability
distribution and the last two constraints guarantee that the
columns of the decision matrixT are valid probabilities, e.g.
have non-negative values and sum to one. The statement of
the optimization problem gives a nice game theoretic inter-
pretation to the minimax problem. An adversary is trying to
choose an event distributionp to maximize the Bayes risk and
the algorithm designer is trying to choose a decision matrix
T to minimize the risk. The optimization problem as stated in
Equation 10 cannot be directly plugged into a solver. Further
manipulations are required to get it into the proper form. The
goal is to be able to write the optimization problem as a single
minimization problem, i.e. convert the maximization problem
into a minimization problem. This can be achieved by utilizing
the duality theory of linear programming ([5], [6]).

First, the risk can again be rewritten as

1T ((Λ · diag(p)) ◦ (TP ))1

= trace
(

(Λ · diag(p))T TP
)

= 1T
(

TT (Λ · diag(p)) ◦ P
)

1

= vec
(

TT (Λ · diag(p))
)T

vec(P )

= vec
(

TT (Λ · diag(p))
)T

[

pnon-event

p

]

= vec
(

TT (Λ · diag(p))
)T

p̃ (11)

where we have defined̃p =

[

pnon-event

p

]

and pnon-event is

the discretized chi-squared distribution. Introduce the opti-
mization variablep̂ ∈ R

2N . This variable differs from the
optimization variablep in Equation 10 becausep represented
the unknown event distribution but̂p will have both the
non-event and event distribution unknown. The knowledge of
the non-event distribution will be incorporated as an equality
constraint in the reformulated optimization problem. Next, let



c = vec
(

TT · (Λ · diag(p))
)

and letA ∈ R
(N+2)×2N matrix

defined as

A =





IN 0N

01×N x

01×N 11×N





whereIN ∈ R
N×N is the identity matrix,0N ∈ R

N×N is a
matrix of zeros and01×N and11×N are row vectors of zeros
and ones respectively. Lastly, the constraint values in Equation
10 are captured byb, the constraint vector, defined as

b =





pnon-event

µevent

1



 ∈ R
N+2 (12)

The inclusion ofpnon-event incorporates our knowledge of the
background distribution. With the previous definitions and
using the equational form of a linear program (see [6]) or
standard form linear program (see [5]), the maximization
problem in 10 can be written as

max
p̂∈R2N

cT p̂

subject to Ap̂ = b

p̂ ≥ 0

. (13)

Introducing the dual variabley ∈ R
N+2, the dual problem to

the maximization problem in Equation 13 can be written as

min
ŷ∈RN+2

bTy

subject to ATy − c ≥ 0
y ≥ 0

. (14)

Putting everything together, the optimization problem in Equa-
tion 10 can be rewritten as a single minimization problem
which can be plugged into a solver:

min
T∈Rp×n,ŷ∈RN+2

bTy

subject to ATy − c ≥ 0
T ≥ 0
1T
2×1T = 1T

N×1.

(15)

The optimization problems in Equations 10 and 15 provides
a template for the types of constraints that can be placed on
the minimax distribution. For example, moment constraintson
the minimax distribution can be easily handled by adding the
constraintpTxn = Mn, wherexn means raising each element
of x to thenth power andMn is thenth moment constraint.
Support constraints can be added to restrict where the minimax
distribution has probability mass by zeroing out columns inthe
A. Additionally, rather than have equality constraints onµevent

or the known background distribution, box constraints can be
used to constrain the values to an interval. These are just a
few examples of possible constraints. Indeed, any constraint
that is linear inp̂ can easily be incorporated.

V. RESULTS

Having formulated the optimization problem (which is a
linear program) in Equation 15, the minimax distribution can
be solved by using a convex solver. The results in this section
were generated in MATLAB using YALMIP [8] as the parser
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Fig. 2. Top: Knownχ2 background distribution and minimax distribution.
Bottom: Decision probabilities versus observations.

and Mosek [9] as the solver. Other solvers were attempted,
such as SDPT3 [10] and SeDuMi [11], encountered numerical
issues.

The formulation in the previous section is very general
and to solve for the minimax distribution, values have to be
assigned to the problem parameters. The values used for the
results to shown will now be discussed. There will be two
states of nature (m = 2), either an event or no event. There will
be three actions (a = 3), either declaring an event, declaring
a non-event, or declaring uncertainty. The supportx needs to
be defined and actually plays an important role in the solution
to the optimization problem. Ideally, the more support points
the better, as then the discrete distributions better approximate
the continuous distributions. However, the more points that are
used, the more optimization variables and thus the more com-
putational power is needed. The supportx that is considered
will have5×104 points logarithmically spaced on[1, 106]. The
empirical event mean was set toµevent = 6.67 × 104, which
is the mean measured on the test data. The prior probability
of an event is set top(event) = 10−7 = 1− p(no event), i.e.
events are very rare. Lastly, the loss matrix used is

Λ =





−100 1000
50 −500
100 −1000



 ,

where the first column corresponds to “no event”, the second
column to an “event”, first row for declaring no “event”,
second row for declaring “undecided” and the third row for
declaring an “event.” The risk is to be minimized, so negative
numbers can be viewed as a reward.

The top plot in Figure 2 shows the knownχ2 background
distribution for the test data which has 101 degrees of freedom
and the minimax distribution which is the solution to the
optimization problem. Because aχ2 distribution has a well
known density, the probability mass becomes astronomically
small over most of the support as observed in the figure.
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Fig. 3. Left: ROC Curve assuming the minimax distribution as theevent
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Notice that the minimax distribution tries to place most of
it’s mass in the same area as the background distribution so
as to try to produce maximum confusion. There is also some
probability mass at the right end of the support so that the
mean constraint is met. The bottom plot in Figure 2 shows the
rows of the decision matrixT which represent that probability
of taking an action for a given observed value of the supportx.
Notice that for “typical” values of the background distribution,
the algorithm declares a non-event with probability one. For
most of the support where both the background and minimax
probabilities have low probability, the algorithm essentially
picks one of the three decisions (event, non-event, uncertainty)
with equal probability.

As mentioned in the Section I, traditional decision theoretic
analysis is based on knowledge of the distributions of all the
events (in this case event and non-event) of interest. In an
accompanying work [3], a threshold was chosen based solely
on the non-event distribution since the event distributionis
unknown. Revisiting the binary hypothesis problem, one can
use the minimax distribution, which is the worst case distri-
bution, as a proxy event distribution and compute classical
metrics such as a ROC curve. Figure 3 shows the ROC curve
using the minimax distribution computed in the considered
problem. This is an example of what can be done, but in
this case the results should be taken with a grain of salt.
The problem considered is fundamentally a ternary decision
problem so the minimax distribution found would not be the
same minimax distribution found by solving a binary decision
problem.Regardless, it may be useful to use the minimax
approach to use the minimax distribution as a surrogate for the
unknown event distribution to perform traditional hypothesis
testing analyses such as a ROC curve.

VI. CONCLUSION

This work considers how to generate a surrogate distribution
for the unknown event distribution so that a risk based analysis

can be undertaken and decision algorithm can be designed.
Specifically, the samples from PIR sensors are processed in
a way developed in [3] to produce a metric with known
distribution when there is no event. A binary state of natureis
analyzed where each observed value of the metric was either
generated by an event or the background. Although the state
of nature was fixed to be binary, the framework is sufficiently
general to allow for any number of states. A framework is
developed such that an arbitrary number of decisions or actions
a can be taken depending on the observed value of the metric.
An expert is assumed to assign a loss to each combination of
actions and states of nature and the prior probabilities of each
state of nature are assumed known or given by an expert.
With this knowledge, a minimax optimization problem is
constructed to find the minimax distribution for the computed
metric during an event. The minimax distribution is the most
difficult distribution in the sense that it maximizes the risk.
Thus, using the minimax distribution for analysis providesa
lower bound for the risk performance of the system.
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