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EPIGRAPH

You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New

York and his head is meowing in Los Angeles. Do you understand this? And

radio operates exactly the same way: you send signals here, they receive them

there. The only difference is that there is no cat.

—Albert Einstein
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ABSTRACT OF THE DISSERTATION

Feedback Reduction Techniques and Fairness in Multi-User MIMO
Broadcast Channels with Random Beamforming

by

Matthew Owen Pugh

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2011

Professor Bhaskar D. Rao, Chair

With the rise of cellular communications, the broadcast channel has gained

prominence since it is an effective model of the cellular downlink channel. Multiple-

input multiple-output (MIMO) communications has also gained in popularity due

to its theoretically promised performance benefits over traditional single antenna

systems. Combining these two theoretical objects yields the the MIMO, or vector,

broadcast channel. To achieve the highest possible performance it is known that

channel state information (CSI) from each user in the broadcast channel must be

known at the transmitter. This requires each user to feed back this information,

which is an unwanted overhead.

xiv



The first part of the dissertation discusses methods to reduce this feed-

back overhead by considering use of multiple receive antennas. Under the random

beamforming transmit methodology, the feedback is reduced by considering only

feeding back the largest SINR value observed at each user. Analysis of this re-

duced feedback scheme involves finding the distribution of the largest SINR over

correlated random variables. Each user can also use the additional receive anten-

nas to perform LMMSE reception. The distribution of the post-processed SINR

is found and used to compute the system performance. Feedback can be reduced

after LMMSE reception by feeding back only the largest post-processed SINR.

Bounding techniques on the distribution function of the maximum post-processed

SINR are used to evaluate the performance of this scheme. Fixed finite thresholds

are shown to have no asymptotic effects on the system performance.

The second part of the thesis considers the design of thresholds as a function

of the number of users to reduce feedback. The asymptotic properties of any suc-

cessful threshold are derived, namely any threshold T (n) ∈ o(log n) asymptotically

achieves the optimal sum-rate scaling rate while any threshold T (n) ∈ ω(log n)

loses all multi-user diversity. Under three proposed system performance metrics,

the optimal threshold is obtained. These metrics are: constraining the average

number of users providing feedback, constraining the probability that no user feeds

back, and constraining the rate lost due to thresholding.

The final portion of the dissertation address the question of fairness in the

random beamforming technique. To improve fairness the proportional fair sharing

algorithm is proposed as a substitute for the greedy scheduling algorithm. Under

the Rayleigh fading model, the asymptotic performance is found to be identical

to the asymptotic performance of the greedy algorithm. The rate of convergence

of the proportional fair sharing algorithm to the asymptotic performance limit is

found. The distribution of the distance from the asymptotic limit is computed.

Additional analysis is performed on the use of thresholds under proportional fair

sharing.
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Chapter 1

Introduction

With cellular technologies becoming ubiquitous, and the demand for multi-

media content increasing, maximizing the throughput of the downlink channel is an

important and challenging problem. In traditional point-to-point communication

problems, transmission schemes that are agnostic of the channel conditions have

been developed that can achieve near-optimal performance. Thus in a traditional

setting, the need for CSI is not critical. In the multi-user communication scenario

of the broadcast channel, CSI becomes absolutely necessary to achieve the best

possible performance. The reason for this is that in the multi-user scenario, there

exists a form of diversity which cannot be exploited without channel knowledge,

and that diversity is multi-user diversity. When there are many users in a broad-

cast channel, each user will experience varying channel conditions, some of which

are good and some of which are poor. With CSI available at the transmitter, or the

base station in the cellular downlink channel, the transmitter can schedule users

who are currently in strong channel conditions that facilitate the highest through-

puts. By knowing the CSI and the channels that can support high data rates, the

transmitter is exploiting the multi-user diversity. Without any CSI at the trans-

mitter, such scheduling decisions cannot be made and all multi-user diversity is

lost. Therefore, as previously alluded to, CSI is required in order to exploit the

multi-user diversity of the broadcast channel. The transmitter is made aware of

the CSI by each user making some measurement of the channel and feeding back

this measurement. This feedback is an unwanted but necessary overhead to get

1
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the best possible system performance.

This dissertations analyzes various methods of reducing the feedback of

channel state information (CSI) in multi-user multiple-input multiple-out (MIMO)

broadcast channels. Much research has been performed on designing efficient chan-

nel metrics that capture the nature of the channel conditions and on effective means

of conveying this metric back to the transmitter. Under the random beamforming

transmit scheme where signal-to-interference plus noise ratio (SINR) is the channel

metric which is fed back, various techniques are developed and analyzed to reduce

this feedback. Feedback reduction can be achieved in a MIMO broadcast channel

by exploiting the additional spatial diversity at each user created by the additional

spatially separated receive antennas. Feedback in this case is reduced by consider-

ing only the best channel locally at each user over receive antennas or by reducing

the total number of SINR values by employing an optimal linear receiver at each

user. To further facilitate feedback reduction a threshold can be implemented at

each user such that if a particular user’s SINR is below the threshold, the SINR

value is not fed back to the transmitter. Originally it was shown that no asymp-

totic throughput is lost by the implementation of any finite threshold. Additionally

research was done to find the scaling rates on any possible threshold as a function

of the number of users in the system such that optimal performance was obtained

asymptotically. Performance metric were proposed and optimal threshold derived

under these metric for non-asymptotic results. Finally, when exploiting multi-user

diversity, the fairness of the system can be a concern. Some users may suffer from

poor channel conditions for extended periods of time, and thus not be scheduled

by a greedy scheduling algorithm such as that used by the random beamforming

transmit scheme. To address this concern, use of the proportional fair sharing al-

gorithm (PFS) is suggested and under the proposed system model the convergence

to the performance of the greedy scheduling algorithm is proven. To once again

reduce feedback, the application of a threshold to the PFS algorithm is considered

and analyzed.

This chapter is organized as follows. Section 1.1 provides some background

on fading channels, the need for channel state information in multi-user systems
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and the random beamforming transmit scheme under the i.i.d. Rayleigh fading

channel model. Section 1.2.1 provides details on the methodologies used to reduce

feedback and section 1.2.2 describes the design of thresholds to reduce feedback.

Finally, section 1.2.3 discusses in more detail the proportional fair sharing algo-

rithm and how it accommodates fairness.

1.1 Background

1.1.1 Background on Fading Channels

In a traditional point-to-point communication system with a single transmit

and receive antenna, the probability of symbol error decays exponentially fast

with respect to signal-to-noise ratio (SNR) when the channel is an additive white

gaussian noise (AWGN) channel. For simplicity, consider a narrowband channel

whose symbols are indexed by m. The input-output relationship of the AWGN

channel is simply

y[m] = x[m] + n[m] (1.1)

where x[m] is the transmit symbol, y[m] the receive symbol, and n[m] the additive

white gaussian noise. Under the AWGN model, errors occur only when the additive

noise term is so large that it shifts the transmit symbol into the decision region of

a different symbol at the receiver, and this leads to the exponential rate of decay

of the symbol error probability as a function of SNR.

Most channels unfortunately do not behave as the AWGN channel. The

environment in which the signal is propagated significantly affects the signal itself.

For example, a signal that is transmitted may have a direct line of sight path to

the receiver, as well as an indirect path that involves reflections off of near by envi-

ronmental objects. Thus at the receiver, various time delayed copies of the original

symbol are received and there is a self-inflicted interference. A common way of

modeling this phenomenon for narrowband flat fading channels is the Rayleigh

fading model given by the following equation

y[m] = h[m]x[m] + n[m] (1.2)
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where the transmit symbol is now multiplied by the fading coefficient h[m]. In a

Rayleigh fading channel, h[m] is a complex circularly symmetric random variable

that models the effects of the environment. The distribution of the random variable

comes arises from the central limit theorem. Fading channels are much more

representative of channels encountered in reality and has adverse effects on the

system performance. Under the Rayleigh fading model, the probability of error

decays as 1
SNR

rather than the exponential rate of decay of the AWGN channel.

One might imagine that performance can be improved if h[m] is learned via pilot

symbols or some other mechanism. Unfortunately knowledge of h[m] only improves

performance by 3 db and the error probability still decays as the inverse of SNR.

Such poor performance compared to the AWGN channel comes about because

there are now two sources of error. An error can occur when the noise term is

large, or when the norm of the multiplicative fading term is small. The probability

of the later event dominates and leads to the inverse scaling.

MIMO systems can help combat fading channels and improve system

throughput because these systems provide additional spatial diversity and degrees

of freedom due to the multiple transmit and/or receive antennas. The trade-

off between exploiting the spatial diversity and the degrees of freedom is rather

complicated, but a simple example will now be shown that demonstrates how

additional receive antennas can help reduce the probability of error. Let there

be a single transmit antenna and N receive antennas in a point-to-point system

experiencing a Rayleigh fading channel. The channel model for the ith receive

antenna follows from Equation 1.2

yi[m] = hi[m]x[m] + ni[m] (1.3)

and the fading coefficients are independent for each i ∈ {1, . . . , N}. Using a

maximum ratio combining (MRC) receive technique, the probability of error now

scales as 1
SNRN

, where the exponent of N is due to the receive spatial diversity.

This simple example illustrates just one of the benefits of MIMO communication

systems.
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1.1.2 Multi-User MIMO Broadcast Channel Multi-User

Diversity

The channel that is considered in this dissertation is the multi-user MIMO

broadcast channel. In this channel, there is a transmitter, equipped with mul-

tiple transmit antennas, that sends messages to n users, each of which may be

equipped with multiple receive antennas. The channel between each transmit-

receive antenna pair for every user is assumed to follow an i.i.d Rayleigh fading

model according to Equation 1.2. From an information theoretic point of view

the n-dimensional capacity region is of fundamental interest in characterizing the

maximum potential of the channel. The works [WSS06],[YC04] were able to char-

acterize this region. An important point on the outer surface of the capacity region

had been characterized earlier in [CS03]. The point analyzed was the sum-rate ca-

pacity, which is the point where the vector-valued function f(x) = x intersects

the boundary of the capacity region. The sum-rate capacity is an interesting and

important metric for characterizing the maximum potential of a channel because it

measures the maximum total data rate that is capable of being transmitted. Any

other point on the capacity region may give a particular user a higher average rate,

but it comes at the expense of reducing the sum total of all the rates among the

users.

The theoretical capacity region is useful as a benchmark for any communi-

cation system since the capacity region is the theoretical maximum possible per-

formance given the channel model. The problem with the proofs of the theoretical

capacity and sum-rate capacity expressions is that they are often non-constructive.

The proof of the maximum sum-rate point uses the now well known dirty paper

coding technique, which is non-causal and computational expensive. The difficul-

ties of implementing the techniques used in the proofs has led to much research

dedicated to finding techniques that are computationally more feasible yet offer

good performance The sub-optimality of these techniques is traded off with the

ease of implementation.

One of the metrics that the suboptimal techniques attempt to match is the

sum-rate scaling rate as a function of the number of users in the broadcast chan-
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nel. Assume that the transmitter in the broadcast channel has M antennas. The

number of transmit antennas limits the number of independent data streams that

can be multiplexed simultaneously on any given time-frequency resource. This is

to say that when there are M transmit antennas, at most M independent users

can be simultaneously transmitted to. When there are n > M users in the broad-

cast channel, a new form of diversity arises: multi-user diversity. If there are

more users than transmit antennas, by scheduling any subset of M independent

users, one would expect there to be roughly M times the throughput as opposed

to a single user system. This is indeed the case, but higher performance can be

achieved by carefully selection of the M users to schedule. The sum-rate analy-

sis work performed in [CS03] shows that as a function of the number of users n,

the optimal sum-rate of the broadcast channel scales as M log log n. This result

says that in addition to the throughput gain due to multiple users and multiple

transmit antennas, that the sum-rate grows as a function of the number of users.

This growth due to the number of users is due to the multi-user diversity. When

there are many users, some users will experience high quality channels with high

probability. By transmitting to these users the sum-rate performance of the system

is increased. It is clear that to schedule the users experiencing the best channel

conditions requires knowledge of these channel conditions at the transmitter. The

feedback of this channel state information (CSI) is essential in order to exploit

the multi-user diversity and benefit from the growth rate of log log n. Transmit

schemes of low computational complexity that can achieve the log log n sum-rate

growth are asymptotically nearly optimal yet are easily implementable. The ran-

dom beamforming transmit scheme, the transmit scheme which is the basis of this

dissertation, is one such scheme.

1.1.3 Random Beamforming

In the broadcast channel, as mentioned in Section 1.1.2, when the trans-

mitter has M transmit antennas, up to M independent users can be scheduled at

any given scheduling epoch. A central question is how to select which users to

schedule. To exploit the multi-user diversity, this question then becomes one of
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how does one characterize a “good” channel. Saying a channel is “good” is more

complicated than the point-to-point communication channel where everything can

be characterized by SNR. Since the transmitter is sending to M different users, the

messages interfere with each other and thus can decrease the SINR. Thus, schedul-

ing M quality users becomes not only a problem of finding users with high SNRs,

but making sure the scheduled users do not interfere with each other significantly.

The random beamforming technique proposed in [SH05] confronts these issues.

The random beamforming technique assumes a Rayleigh block fading chan-

nel model. If there are M transmit antennas at the transmitter, then the trans-

mitter randomly generates an M dimensional orthonormal basis in CM drawn

uniformly from some isotropic distribution. Each of the random basis vectors will

act as a beamforming vector for one of the M messages that is to be sent during

each scheduling interval. It is assumed that each user in the broadcast channel

knows the randomly generated basis, whether the transmitter notifies them of this

basis via a message or by common randomness shared between the users and the

transmitter. Once the random basis is generated and known at each user, a pilot

signal is sent on each transmit beamforming vector, the basis vectors, and the

SINR is measured at each user. Notice that because the beamforming vectors are

known, the SINR is capable of being measured. The SINR is a scalar value that

represents the quality of the channel in each beamforming direction and is the

essential CSI required to exploit multi-user diversity. If the transmitter is noti-

fied of the SINR values measured at each user, then to maximize the sum-rate

throughput the scheduling algorithm selects the user with the highest SINR on

each of the transmit beamforming vectors. It was shown in [SH05] that this ran-

dom beamforming transmit scheme with greedy scheduling under Rayleigh fading

achieves a sum-rate scaling that grows as log log n, and thus asymptotically fully

exploits the multi-user diversity. Based on this very promising result, this disser-

tation focuses on how to reduce the amount of CSI, or in this case the number

of SINR values. Additionally, the greedy algorithm under random beamforming

and a Rayleigh fading model cannot guarantee fairness on any finite time frame so

the proportional fair scheduling algorithm is considered as a replacement for the
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greedy scheduling algorithm and the performance is analyzed.

1.2 Contributions of the Thesis

The main results of this dissertation are contained in three parts. The first

part considers feedback reduction in multi-user MIMO broadcast channels by ex-

ploiting spatial diversity. The second section utilizes thresholding mechanisms to

reduce feedback. The final portion considers the fairness of the random beamform-

ing technique. The three parts are summarized below.

1.2.1 Feedback Reduction Techniques Exploiting Spatial

Diversity

For the most part, the work done in [SH05] focuses on when each user has a

single receive antenna. If there are M transmit antennas at the transmitter, then

each user makes M SINR measurements, one for each random transmit beamform-

ing vector. Each of these M values is fed back to the transmitter, and if there are

n users in the system, the total number of SINR values fed back is nM . A ques-

tion addressed by this dissertation is what happens when each user, rather than

having a single receive antenna, has N ≤ M receive antennas. Two approaches

are taken to this case. The first considers each antenna individually. Thus at each

user, their are NM SINR values to be measured, one for each antenna and each

transmit beam. The second approach utilizes the fact that the N receive antennas

are co-located at a user and thus combining can be performed. A linear minimum

mean squared error (LMMSE) filter, which is the optimal linear receive filter, is

applied at each user. The application of the LMMSE receive filter results in M

values at the output of the filter, one for each transmit direction. These two ap-

proaches leverage the fact that there are additional receive antennas and thus more

possible measurements and diversity. A question to be ask however is if all the

measurements are required at the transmitter to exploit the multi-user diversity.

This question is addressed by this work.
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Individual Antenna Perspective

In a system where the transmitter has M antennas and each user has

N ≤ M receive antennas, then as previously mentioned there are NM SINR

measurements at each user. In the work [SH05], it is pointed out that not all NM

values must be fed back to the transmitter to exploit the multi-user diversity. This

result is based on the observation that only the largest SINR for each transmit

beam at each user need be fed back. For each transmit vector, a user makes N

SINR measurements, one for each receive antenna. Only the maximum of these N

values need back fed back because the other N − 1 values are not even the max-

imum locally at the particular user, so it is impossible to be the maximum SINR

in the entire system. The scheduling algorithm at the transmitter is greedy, and

thus these N − 1 values becomes inconsequential. Therefore, as opposed to a total

feedback load of nNM SINR values if each measurement was fed back, only nM

values are fed back, M per user, and achieves the same performance as if every

value was known at the transmitter. Now the question is if each user is required

to feed back even M values.

Each user has NM SINR measurements and a method was just described

such that the maximum SINR value over the receive antennas is fed back. In an

effort to further reduce the amount of SINR fed back, what happens if only the

maximum over the M maximums is fed back? That is to say, consider feeding back

only the single largest SINR value among the NM SINR values and the transmit

beam index associated with that value. This problem proves to be much more

difficult than the previous feed back scheme. The primary reason is that when

taking the maximum over transmit beams, the SINR random variables become

correlated. The first step in solving this problem is to characterize the distribution

of the maximum value over both transmit vectors and receive antennas. After

this is done, the asymptotic sum-rate scaling rate must be found under this new

distribution. Fortunately, the sum-rate scales as log log n, the theoretical optimum.

Therefore, if rather than feeding back M values, if each user only feeds back

the single largest measured SINR value and the associated beam index, the same

asymptotic scaling rate can be achieved as full SINR feedback. Under this modified
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scheme, only n SINR values are fed back, so the amount of total feedback has been

reduced by a factor of M as compared to the previous method. The details of this

analysis can be found in Chapter 2.4.

LMMSE Receivers

In the previous Section 1.2.1, each antenna provided an additionally SINR

observation for each user. The additional receive antenna can also increase system

performance by allowing for more complicated receive architectures. One such

architecture is the LMMSE receiver. At the output of the LMMSE receiver, there

are M post-processed SINR values, one for each transmit beamforming vector.

One would imagine that by implementing an LMMSE receiver at each user, and

feeding back the resulting M SINR values, that the scaling rate of log log n is

achieved. This result however depends on the distribution of the SINR values

that are fed back to the transmitter, and thus to determine the scaling rate of

the system employing LMMSE receivers requires knowing the distribution of the

post-processed SINR. This distribution is found and shown to exhibit the desired

log log n scaling. This scheme has a total feedback overhead of nM SINR values.

Akin to the individual antenna perspective, rather than feeding back the

M post-processed SINRs, what happens if only the maximum of these M values is

fed back along with the corresponding transmit beam index? Unfortunately, the

closed form distribution of the maximum of the M post-processed SINR values

could not be found due to the correlated nature of these random variables. To

characterize the scaling rate of this reduced feedback scheme where only the largest

post-processed SINR value is fed back, sufficiently tight bounds are found for the

distribution function of the maximum of the M values. It is then shown that

both the lower and upper bounds exhibit the log log n scaling rate, and thus the

true, but unknown, distribution of the maximum exhibits the same scaling rate.

Therefore rather than feeding back all M post-processed SINR values, one can

feed back only the largest among the M and the corresponding beam index and

still achieve the same asymptotic sum-rate scaling rate. Chapter 2.5 contains the

details for these results.
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Finite Thresholds

To reduce the amount of feedback even further, a thresholding mechanism

is proposed. The idea is that a threshold is chosen such that if the SINR value that

a user would feed back falls below the threshold, then the SINR value is not fed

back. Because the scheduling algorithm is known to be greedy, such a mechanism

seems feasible because if the threshold is chosen properly, the feedback of SINR

values below the threshold are eliminated and these values hopefully had a small

probability of being the largest SINR values in the system. Thus the goal of the

thresholding mechanism is to reduce feedback by the elimination of the feedback

of small SINR values that would not be scheduled even had they been provided

to the transmitter, and therefore not affecting the system performance. The draw

back of the thresholding mechanism is that it is always possible that for any chosen

threshold, that no SINR value exceeds it, at which point no SINR values are fed

back to the transmitter. In such a scenario, the transmitter has no CSI, and thus

the multi-user diversity cannot be extracted.

It is shown that for any finite threshold value T , that as the number of users

asymptotically goes to infinity, that the rate lost due to the threshold goes to zero.

Thus asymptotically, for any finite threshold, there is no difference between the

thresholded system and the system without a threshold in terms of sum-rate. This

result basically follows from the fact that for the maximum of n random variables

that have unbounded support from above, as n grows to infinity, the maximum

becomes arbitrarily large and will exceed any fixed finite threshold. Thus a fixed

finite threshold is useful for reducing the total feedback load of the system while

not comprising the asymptotic properties of the system. Chapter 2.6 contains

these results.

1.2.2 Feedback Reduction Techniques Using

Thresholds

In Section 1.2.1 it is described how any fixed finite threshold does not affect

the asymptotic performance of the system. While this result is interesting, it does
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not provide insight into how an effective threshold can be designed. A meaningful

threshold should be a function of the number of users in the system rather than

some a priori fixed value. The reason for this is that as the number of users in the

system increases, the threshold should be increased. To see why this is the case,

when there are more users in the system, then there is an increased chance that at

least one user is experiencing very good channel conditions, or in our case a large

SINR value, and thus the threshold can be increased to reduce the amount of small

SINR values that are fed back. Conversely, when there are not many users in the

system, the threshold should be small since there is a significant probability that

no user experiences a large SINR. When no user exceeds the threshold, no SINR

is fed back to the transmitter and all multi-user diversity is lost. Two approaches

are considered in this dissertation for the appropriate design of thresholds. The

first class of results considers the asymptotic performance of any threshold as a

function of the number of users. The second set of results proposes certain metrics

and optimizes the thresholds accordingly.

Asymptotic Properties of Thresholds

If a threshold is a function of the number of users, how fast can the thresh-

old grow? That is, intuitively it is argued that as the number of users in the

system increases, so too should the threshold. It is possible however that if the

threshold grows too fast as a function of the number of users, that eventually

no user will exceed the threshold and the multi-user diversity cannot be utilized.

This dissertation provides the answer to the appropriate scaling rate of any pos-

sible threshold such that multi-user diversity is not lost. More precisely, let T (n)

be a threshold which is a function of the number of users. It is shown that if

T (n) ∈ o(log n) that multi-user diversity is still achieved and the sum-rate of the

system still asymptotically grows as log log n.

The aforementioned result provides a sufficient condition for the scaling rate

of any possible threshold as a function of the number of users. A natural question

that follows is if it is possible for a thresholding function T (n) to grow faster than

log n and still achieve the log log n sum-rate scaling. To address this question, the
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converse to the previous result is found. Namely it is shown for any thresholding

function T (n) ∈ ω(log n), asymptotically no user in the system will exceed the

threshold almost surely, and thus asymptotically no users in the system provide

feedback and all multi-user diversity is lost. Therefore log n is a kind of boundary

on how fast the threshold can scale and still have the system achieve the optimal

sum-rate scaling rate. These results are contained in Chapter 3.4.

Thresholds for a Finite Number of Users

The results concerning the growth rate of possible successful thresholding

functions in Section 1.2.2 is a result of theoretical concerns, but how should the

threshold be chosen when the system designer knows there are a finite number of

users n in the system? The answer to this question depends on what the system

designer deems most important in terms of system performance and what can

be sacrificed. Obviously a system in which there is no threshold at all will yield

superior performance since full CSI is known at the transmitter, but the sacrifice

is that feedback load is maximum; costing uplink bandwidth and transmit power.

To reduce the feedback overhead, three metrics are proposed and the thresholds

are optimized under these metrics.

The first metric is to constrain the probability that no user feeds back for

any transmit beam to be less than some design parameter γoutage. When no user

feeds back for a particular transmit beamforming vector, then multi-user diversity

is lost, and this event is called an outage event. Therefore the challenge is to design

the threshold T (n) such that when there are n users in the system, the probability

that no user exceeds T (n) for any transmit beam is less than γoutage. The threshold

in this case if found as a function of n and γoutage. The second proposed metric

constrains the average amount of feedback in the system. Namely, the goal is to

design the threshold such that on average only k of the n users in the system feed

back their SINR information for each transmit beam. Lastly, the third metric

constrains the difference between the rate of the thresholded and unthresholded

systems. Any non-zero threshold will cause the system to incur some rate loss

because there is always the probability that no user will experience an SINR larger
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than the threshold at any given scheduling epoch. Let Rloss be a design parameter

such that the difference between the rates of the thresholded and unthresholded

system is less than Rloss. Parameterized by n and Rloss, the optimal threshold is

found. Chapter 3.5 provides the detailed analysis of these results.

1.2.3 Proportional Fair Sharing and Fairness

The random beamforming technique uses a greedy scheduling algorithm to

select the users experiencing the best SINR for each transmit beamforming vector.

Due to the i.i.d. nature of the Rayleigh fading channel no user is preferred over

time. Thus, each user has an equal chance of being the maximum which will be

scheduled and thus asymptotically each user will be scheduled an equal portion of

the time and will asymptotically experience the same average rate. The asymptotic

fairness hides the fact that the greedy scheduling algorithm may produce periods

where a specific user is not scheduled for an arbitrarily long period of time. To

confront this issue, this dissertation considers implementing a proportional fair

sharing algorithm in place of the greedy scheduling algorithm.

Under the proportional fair sharing algorithm, the transmitter schedules

the user with the best ratio of current rate to average rate for each transmit beam

instead of just the user with the largest SINR. More precisely, let Ri,n be the

current rate of user i at the nth scheduling epoch (which is a function, in the ran-

dom beamforming scheme, of the SINR) and 1i,n be an indicator random variable

denoting whether user i was scheduled at scheduling period n. The average rate

scheduled for user i up to scheduling period n is given by
∑n−1

k=0 1i,kRi,k. The PFS

algorithm thus schedules the user with the largest ratio of Ri,n to
∑n−1

k=0 1i,kRi,k.

This algorithm promotes fairness by increasing the chance that users who have

small averages rates are scheduled.

Generally there is a trade off between fairness and throughput. The greedy

algorithm with random beamforming maximizes the rate at each scheduling period,

but does not consider fairness at all, and thus for any finite time window, is not fair.

The PFS algorithm on the other hand sacrifices some rate to increase the average

throughput of users that have small average rates. The central question is how
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much rate is lost due to trying to be fair. The main result shown in this dissertation

is that when the rates are drawn from an i.i.d. distribution (which they are in the

random beamforming scheme under i.i.d. Rayleigh fading), asymptotically the

average rate experienced by each user under the PFS algorithm asymptotically

equals that of the greedy algorithm. That is to say that in the appropriate state-

space, the two algorithms converge to the same point. These results are detailed

in Chapter 4.4 and 4.5.

The equilibrium point in this state space is identified. The rate of conver-

gence of the PFS algorithm to this equilibrium point is derived in Chapter 4.6.1.

At any given time, the distance of the PFS algorithm to the equilibrium point is

a random variable. The asymptotic distribution of this distance random variable

is a normal random variable and the covariance matrix is found in Chapter 4.6.2.

Additionally, taking a cue from the previous section, application of a threshold is

considered under the PFS algorithm. A priori it is not clear how a threshold af-

fects the equilibrium point of the PFS algorithm. Convergence under the proposed

thresholding scheme is proven, and the new equilibrium point is found in Chapter

4.7.



Chapter 2

Reduced Feedback Schemes using

Random Beamforming in MIMO

Broadcast Channels

2.1 Outline

A random beamforming scheme first proposed in [SH05] for the Gaussian

MIMO broadcast channel with channel quality feedback is investigated and ex-

tended. Considering the case where the n receivers each have N receive antennas,

the effects of feeding back various amounts of signal-to-interference-plus-noise ra-

tio (SINR) information are analyzed. Using the results from order statistics of

the ratio of a linear combination of exponential random variables, the distribution

function of the maximum order statistic of the SINR observed at the receiver is

found. The analysis from viewing each antenna as an individual user is extended to

allow combining at the receivers, where it is known that the linear MMSE combiner

is the optimal linear receiver. Using the results in [GS98b] and [GS98a], the CDF

for the SINR after optimal combining is derived. Analytically, using the Delta

Method, the asymptotic distribution of the maximum order statistic of the SINR

with and without combining is shown to be, in the nomenclature of extreme order

statistics, of type 3. Applying the main result in [SH05], the throughput of the

16
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feedback schemes are shown to exhibit optimal scaling asymptotically in the num-

ber of users. Finally, to further reduce the amount of feedback, a hard threshold is

applied to the SINR feedback. The amount of feedback saved by implementing a

hard threshold is determined and the effect on the system throughput is analyzed

and bounded. This chapter is a reprint of a paper coauthored with Bhaskar D.

Rao and appears in the March 2010 issue of IEEE Transactions on Signal Pro-

cessing under the title “Reduced Feedback Schemes Using Random Beamforming

in MIMO Broadcast Channels”. Sections of this chapter also appear in “On the

Capacity of MIMO Broadcast Channels with Reduced Feedback by Antenna Selec-

tion” in Asilomar Conference on Signals Systems, and Computers, March 2008

and “Feedback reduction in MIMO broadcast channels with LMMSE receivers” in

ICASSP 2010.

2.2 Introduction

The users in a broadcast channel experience varying levels of channel qual-

ity. For high throughput, it is useful for the transmitter to be fully aware of the

channel to all the users. This represents a large amount of information that must

be known at the transmitter, especially if the number of users n is large. A mech-

anism by which the transmitter is aware of the channel state information is for

each user to feed back the observed channel. To send back the observed chan-

nel may impose unreasonable complexity, so schemes wherein the users send back

partial channel information, but still realize the major benefits of multiuser diver-

sity, are of interest. The questions that concerns this chapter are how to reduce

the amount of feedback, the tradeoff between reduced feedback and performance,

and what are the benefits of having multiple receive antennas. In this chapter,

the random beamforming scheme suggested in [SH05] is considered. The random

beamforming scheme has the transmitter with M transmit antennas produce M

random orthonormal beams and send the messages on these beams. Because the

throughput is a function of SINR, if each user sends back the SINR it experiences,

then the transmitter transmits to the users that are currently experiencing the
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best channels for each beam. If each of the n users has N receive antennas, each

receive antenna of each user can be considered as an individual user and the SINR

values are fed back as such. In this case, the SINR measured at each antenna for

each beam results in MN SINR values to be fed back per user. Although MN

SINR values are measured at each user, if the maximum per beam is sent back,

namely M values, the same performance can be achieved with reduced feedback.

Other novel techniques that utilize random beamforming have since been

proposed. In [IMKT05], random weight vectors are used during a training period

where the users feed back the required information so that the transmitter can

choose the optimal random weight vectors and users for the current transmission.

This concept is extended in [WCH07] where training is done on a set of random

orthonormal bases and based upon the feedback, the transmitter will select the

best beamforming vectors and users. The question of how many random beams to

use based upon the available multiuser diversity is addressed in [JWZ08]. While

each of these techniques extend the methodology of random beamforming, the

focus of this chapter is to examine random beamforming schemes with minimal

feedback. As such, only a single random orthonormal basis will be considered per

fading block.

In this chapter, a feedback scheme is proposed where each user sends back

the maximum SINR experienced across all the receive antennas and across all

the transmitted beams. This reduces the number of SINR values fed back to the

transmitter further from M to 1 per user. Even with this significant reduction in

feedback, it is shown that asymptotically in the number of users, the distribution

of the maximum SINR is of type 3 (see [Dav70], [Gal78]), the same type as that in

[SH05]. Ultimately, using the methodology developed in [SH05], it is shown this

reduced feedback scheme also exhibits the same asymptotic scaling as the original

feedback scheme.

Next we consider an enhancement to the above schemes. In the above

mentioned feedback schemes, the receive antennas are making individual SINR

measurements. The availability of multiple receive antennas allows combining

to be performed at the receiver to increase the received SINR. Transmit random
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beamforming is utilized in [JCK03] with each user performing receive beamforming

using the left singular vectors of the channel matrix. The effective SNR of each user

is fed back to the transmitter which then selects one user to transmit to based on a

proportional fair scheduler while using waterfilling for power control. This scheme

will not be pursued as it is well known ([TV05] for example) that the optimal

linear receiver is the linear MMSE receiver and using a random orthonormal basis

allows parallel transmission to multiple users. Feeding back the M SINR values per

user after optimal combining increases the throughput of the system for the same

amount of feedback. The amount of feedback is further reduced when only the

maximum SINR seen across beams after optimal combining is sent back, i.e. the

maximum of those M values. This reduces the amount of feedback to a single SINR

value per user and the associated beam index. The behavior of such a scheme is

considered and evaluated in the chapter. The distribution of the SINR values after

optimal combining is derived and asymptotically the distribution of the maximum

is shown to be of type 3 and to have optimal throughput scaling. Similar analysis

of optimal combining in an interference limited regime is performed in [MPP07].

This work was then extended in [MPP08] to the general SINR setting, where for

the the specific case of M = 4 and N = 2, they derive the SINR distribution and

scaling laws for the LMMSE receiver.

As the number of users in the system grows, the amount of feedback also

grows. In an effort to further reduce the amount of feedback, a thresholding mech-

anism can be employed in conjunction with the previously proposed schemes. If

the maximum SINR value that was to be sent back to the receiver is under the

threshold, then the SINR value is not sent back. Consequently, not every user

provides feedback. This scheme is also considered and it is shown that for any

finite thresholding value, the loss due to thresholding asymptotically goes to zero

in the number of users.

This chapter extends the work in [PR08] in several ways, most notably by

considering optimal combining, thresholding and finding a closed form expression

for the distribution of the maximum SINR observed at a user when SINR mea-

surements are taken at the antenna level.
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The organization of the chapter is as follows: the system model used to

analyze the problem and previous work conducted in [SH05] is discussed in Section

II. Section III considers a new scheme where only the maximum SINR per user is

fed back. In the analysis of the problem, the distribution of the maximum SINR

per receive antenna is derived. The asymptotic performance is also analyzed with

the help of the Delta Method. Section IV extends the results of Section III to the

case where each user implements an LMMSE receiver. Section V investigates the

effects of thresholding the SINR feedback on the total amount of feedback in the

system as well as on system throughput. Section VI summarizes the results of this

chapter.

2.3 System Model and Background

In this section the system model used to analyze the problem and previous

work found in [SH05] are discussed. The results found in [SH05] will be built upon

in the latter parts of this chapter.

2.3.1 System Model

A block fading channel model is assumed for the Gaussian broadcast chan-

nel. The transmitter has M transmit antennas and there are n receivers, each with

N receive antennas. It is further assumed that n�M and N ≤M , a reasonable

assumption, for example, in a cellular system. Let s(t) ∈ CM×1 be the transmitted

vector of symbols at time slot t and yi(t) ∈ CN×1 be the received symbols by the ith

user at time slot t. The following model is used for the input-output relationship

between the transmitter and the ith user:

yi(t) =
√
ρiHis(t) + wi(t), i = 1, . . . , n. (2.1)

Hi ∈ CN×M is the complex channel matrix which is assumed to be known at the

receiver, wi ∈ CN×1 is the white additive noise, and the elements of Hi and wi are

i.i.d. complex Gaussians with zero mean and unit variance (as defined by Edelman

in [Ede89]). The transmit power is chosen to be M, i.e. E{s∗s} = M , the SNR at
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the receiver is E{ρi|His|2} = Mρi and ρi is the SNR of the ith user. It is assumed

that ρi = ρ ∀i.

2.3.2 Background

The random beamforming scheme developed in [SH05] forms the basis of

this chapter. The key elements of this work are now described.

SINR Distribution

The transmission scheme, as developed in [SH05], involves generating M

random orthonormal vectors φm (M × 1) for m = 1, . . . ,M , where the basis is

drawn from an isotropic distribution. Let sm(t) be the mth transmit symbol at

time t, then the total transmit signal at time slot t is given by

s(t) =
M∑
m=1

φm(t)sm(t). (2.2)

The received signal at the ith user is given by

yi(t) =
M∑
m=1

√
ρHi(t)φm(t)sm(t) + wi(t). (2.3)

Each receive antenna at each user is assumed to measure the SINR for each of the

M transmitted beams and the maximum of the observed SINR values is fed back

leading to the use of order statistics.

Assuming that the ith user knows the quantity Hi(t)φm(t) from Equation

(3) for all m, the SINR of the jth receive antenna of the ith user for the mth transmit

beam is computed by the following equation:

SINRi,j,m =
|Hi,j(t)φm(t)|2

2
ρ

+
∑

k 6=m |Hi,j(t)φk(t)|2
. (2.4)

Hi,j is the jth row of the ith user’s channel matrix. Because the beamforming

vectors are orthonormal and the entries of Hi are i.i.d. complex Gaussian with

zero mean and unit variance, the numerator in Equation (2.4) is distributed as
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a χ2(2) random variable and the denominator as an independent χ2(2(M − 1))

random variable. The density of the SINR is given in [SH05]

fs(x) =
e−

x
ρ

(1 + x)M

(
1

ρ
(1 + x) +M − 1

)
u(x) (2.5)

From now on, for notational simplicity, the u(x) will dropped from the distribution

and density expressions with the understanding that all the random variables of

interest are nonnegative. To find the distribution of the maximum SINR, the

distribution function must be known and is given by the integration of the density

in Equation (2.5) and is shown in [SH05] to be

Fs(x) = 1− e−
x
ρ

(1 + x)M−1
. (2.6)

Scheduling Scheme

With the cdf of the SINR observed at each receive antenna known, one naive

feedback scheme is for each antenna to send back all the SINR values measured

for each transmit beam. This results in a total of nNM SINR values sent back

to the transmitter, which then transmits to the antennas with the largest SINR

for each transmit beam. Viewing each antenna as a separate user, the following

approximation is shown in [SH05]:

R ≈ E

{
M∑
m=1

log

(
1 + max

i=1,...,nN
SINRi,m

)}
= ME

{
log

(
1 + max

i=1,...,nN
SINRi,m

)}
(2.7)

The approximation sign is required because there is a small probability that the

same antenna is the best for multiple transmit beams and each beam can only

be used to serve one user. To find the approximate rate requires the use of order

statistics.

The distribution of the maximum SINR for a given beam is given by

classical order statistics ([Dav70], [Gal78]) and is

Fmax(x) = [Fs(x)]nN , (2.8)

where Fs(x) is the CDF of the SINR given in Equation (2.6). This equation can

be used because the SINR values across antennas for a specific transmit beam
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are independent and marginally are identically distributed. Feeding back only the

largest SINR value for each transmit beam per user reduces the system feedback

to nM SINR values and is considered in [SH05]. Each SINR value fed back to the

transmitter is distributed according to [Fs(x)]N since the maximum was taken over

the N receive antennas prior to feedback. The transmitter takes the maximum over

the n received SINR values for each beam resulting in maximum order statistic

distributed according to [Fs(x)]nN , which is identical to the distribution had every

measured SINR value been fed back. Therefore, there is no benefit to feeding back

all observed SINR values. For future reference, let us refer to this reduced feedback

scheme of [SH05] as Scheme A.

2.4 Feeding Back the Largest SINR per User

Each user in Scheme A is feeding back the M SINR values associated

with the largest SINR measured for each beam. To further reduce the amount

of feedback, what happens if each user only feeds back the largest SINR value

observed over all receive antennas and transmit beams as well as the associated

beam index? For example, in Figure 2.1, when there are four transmit beams

and 3 receive antennas per user, the quantity of interest is maxi,j SINRi,j, the

maximum SINR element in the grid. This scheme will reduce the total amount of

system feedback from nM SINR values to n SINR values and the corresponding

beam indices. This feedback scheme is referred to as Scheme B. Case 2 of Section

VI in [SH05] proposes a method where at most one beam is assigned to each user

and the SINR metric for user i is given by

SINRi,j =
φ∗jH

∗
iHiφj

1
ρ

+
∑

k 6=j φ
∗
kH
∗
iHiφk

,

which is the combined energy of transmit beam j over the sum of the inverse of the

SNR and the sum of the energy from the other transmit beams. In Scheme B,

the SINR is viewed at the antenna level for each beam while in Case 2 of [SH05],

combining has been performed such that there is one SINR value per transmit

beam. The analysis of optimal combining schemes will come in Section IV of
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Figure 2.1: SINR Observations at a single user for M=4, N = 3

this chapter, while the current focus is on Scheme B. The analysis of this scheme

poses some difficulties that do not arise when considering Scheme A. This section

addresses the new difficulties that arise and then, in the same vein as the work of

[SH05], the asymptotic performance of Scheme B is analyzed.

2.4.1 Analysis of Scheme B

Although Scheme B reduces the amount of feedback by a factor of M

compared to Scheme A, it is suboptimal. This is due to the fact that the best

SINR values for a particular beam may not be fed back due to the restriction that

only one value can be sent back per user. This restriction, however, removes the

mechanism which led to the approximation symbol in Equation (2.7). Although

Scheme B may be suboptimal, in the interest of reducing the feedback as much

as possible, this scheme is considered. Later in this section the asymptotic perfor-

mance of the scheme in the number of users will be analyzed and will be shown to

have optimal scaling properties.

The distribution of the SINR that is served by the transmitter is fun-

damentally different for Scheme B than Scheme A for two reasons. The first

difference is that in Scheme A, the maximum is taken for each beam and the

marginal distributions of the SINR were i.i.d. across receive antennas. However,

the SINR values at a particular receive antenna for different transmit beams are

coupled. Looking again at Figure 2.1, the SINR values in a given column are i.i.d.,
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where as the SINR values in a given row are marginally identically distributed but

are not independent. To see this, fix the antenna at a particular user and vary

the beam index. Let |Hi,j(t)φm(t)|2 = Xm and c = 2
ρ
. Then the SINR values at

a receive antenna are given by X1

c+
∑
k 6=1Xk

, . . . , XM
c+
∑
k 6=M Xk

. The SINRs are coupled

by the appearance of the numerator term of a particular SINR value appearing

in the denominator of all the other SINR values. Because the SINR values are

not independent, the order statistics used earlier cannot be applied. The second

difference between the two schemes is that in Scheme B since each user feeds

back the largest observed SINR over all receive antennas and transmit beams, the

number of SINR values to maximize over at the transmitter for each beam is a ran-

dom quantity. In terms of the distribution of the maximum order statistics, this

changes the exponent reflecting the number of variables being maximized over.

These fundamental differences will now be addressed.

Distribution of the Maximum SINR per User

If the distribution of the largest SINR value at a particular user for a fixed

receive antenna can be found, then the maximum SINR per user can be found

because the SINR random variables are independent across receive antennas. Using

the notation defined earlier, let |Hi,j(t)φm(t)|2 = Xm and c = 2
ρ
. Then for a fixed

receive antenna, the SINR for each transmit beam is given by

SINR1 =
X1

c+
∑M

i 6=1 Xi

, . . . , SINRM =
XM

c+
∑M

i 6=M Xi

The distribution of interest is the maximum of these M SINR values. The

key observation is that if the Xis are ordered, i.e. X(1) ≤ X(2) ≤ · · · ≤ X(M), then

the maximum SINR for a fixed receive antenna is given by

SINR(M) =
X(M)

c+
∑M−1

i=1 X(i)

(2.9)

This makes intuitive sense, since to maximize the SINR, the largest signal power

should be put in the numerator and all the other signal powers should be considered

as interference and put in the denominator. To find the distribution of the quantity

in Equation (2.9), results based on the ratio of the linear combination of order
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statistics are called upon. As mentioned previously, the Xis are distributed as

a χ2
2 random variable, which is equivalent to a exponential-

(
1
2

)
random variable.

The ratio of the linear combination of order statistics drawn from an exponential

distribution have been studied in [Dav70], [MMA82]. After some manipulation

to get the χ2
2 random variables in the proper exponential form, the distribution

function of the maximum SINR for a particular beam index is given by

Pr
(
SINR(M) ≤ x

)
= FSINR(M)

(x) = 1−
M∑
i=1

[di(x)]M+ exp
(
− xc
di(x)

)
Ai(x)

(2.10)

where di(x) = 2[1−x(M−i)]
M−i+1

, Ai(x) = di(x)
∏M

j 6=i (di(x)− dj(x)), and [·]+ is the posi-

tive part of the argument.

Equation (2.10) gives the distribution of the maximum SINR over the

beams for a particular receive antenna at a specific user. Scheme B feeds back

the largest SINR per user, so the maximum has to be taken over receive anten-

nas as well. As with Scheme A, the random variables across receive antennas

are independent, thus the distribution of the maximum SINR per user is given by[
FSINR(M)

(x)
]N

. Figure 2.2 verifies the distribution of the maximum SINR mea-

sured at a user given by Equation (2.10) raised to the N th power by comparing it

with Monte Carlo simulation and it is observed that the theoretical distribution

matches the simulation results exactly.

Order Statistics Over a Random Number of Observations

If each user feeds back the maximum observed SINR and the beam index

that produced it, then the transmitter receives n SINR values and n beam indices

over which to maximize. The number of SINR values to maximize over at the

transmitter for a particular beam is, however, a random number.

For example, in Figure 2.3, there are nine users and at the transmitter,

the number of users feeding back a particular beam index is random. In this case

three users feed back beam index 1, two users feed back beam index 2, and so

on. This effect is not taken into consideration in Case 2, Section VI of [SH05].

There it is mentioned that only the maximum SINR (which differs from the SINR
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Figure 2.2: Monte Carlo simulated Maximum SINR per User versus Theoretical
Distribution for M = 5, N = 2, SNR = 0 dB

metric currently under consideration) and the corresponding beam index need be

fed back, yet the maximum is taken over all n users even though no information is

known about many of the users for a particular beam since that information will

not be fed back.

Because the beamforming vectors are a randomly generated orthonormal

basis from an isotropic distribution and the matrices are composed of i.i.d. circu-

larly symmetric complex Gaussian random variables, there is no preferred beam

over time. That is, each beam has an equal probability of being the one that

produced the maximum at any given user. The joint distribution of the number of

SINR values fed back for each beam can then be viewed as a multinomial distri-

bution where the probability of each beam being selected is 1
M

. The distribution

of the order statistic of the maximum SINR is a distribution function raised to a

power that is a random variable. Marginally, the selection of each beam is dis-

tributed binomially with probability 1
M

. Averaging over the binomially distributed

exponent applied to the distribution FSINR(M)
(x) given by Equation (2.10) yields:

FSchemeB(x) =
n∑
i=0

[
FSINR(M)

(x)
]Ni( n

i

)(
1

M

)i(
1− 1

M

)n−i
. (2.11)
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Figure 2.3: 9 User System only Feeding Back Beam Index and Largest SINR
Over Transmit Beams and Receive Antennas

Figure 2.4 compares Equation (2.11) with monte carlo simulation for the

binomial averaging and the simulation results match the theoretical findings. The

distribution in Figure 2.4 starts at a value of approximately 0.1 rather than 0 since

there is a non-zero probability that no SINR values will be fed back for a particular

transmit beam. In fact the starting value is seen to be
(
1− 1

M

)n
from Equation

(2.11), which in this example evaluates to 0.107.

Throughput Analysis

Using integration by parts and Equation (2.7), the throughput of a scheme

is expressed as

R = ME {log (1 +X)} = M

∫ ∞
0

1

1 + x
(1− F (x)) dx. (2.12)

where X is drawn from the distribution of the scheme being used. Numerical

integration is very attractive since the closed form expression of the expectations

in Equation (6) for the distributions derived earlier are not known to the authors.

Figure 2.5 compares the throughput of Scheme A with Scheme B as a function of

the number of users for various SNRs. Notice that Scheme A and Scheme B tend

towards each other as the number of users increases. This seems reasonable since

as the number of users in the system increases, it is expected that the maximum
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SINR Serviced with Maximum SINR Observed at User Fed Back to Theoretical
Bounds for M = 5, N = 2, n = 10, SNR = 0 dB

SINR for each beam is distributed across users with high probability. When the

maximum SINR for each beam is distributed over users, Scheme B captures

the true maximum and the two schemes perform equivalently. Figure 2.5 also

shows that as the SNR increases, eventually there is no performance gain due

to the increased interference. Most noticeably, at SNRs of 20dB and 30dB, the

performance is virtually indistinguishable.

2.4.2 Asymptotic Performance

The asymptotic performance of these schemes compared with the optimal

sum-rate capacity that is achieved via dirty paper coding is of primary interest.

The main result from [SH05] concerns the asymptotic scaling of Scheme A with

one receive antenna per user and is restated here:

Theorem 1. ([SH05]) Let M and ρ be fixed and N = 1. Then

lim
n→∞

R

M log log n
= 1 (2.13)

where R is the throughput of Scheme A.



30

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Number of Users

T
hr

ou
gh

pu
t (

B
its

/s
ec

/H
z)

Throughput for Scheme A and B versus Number of Users (M = 5, N = 2)

 

 

Scheme A: SNR −10dB
Scheme A: SNR 0dB
Scheme A: SNR 10dB
Scheme A: SNR 20dB
Scheme A: SNR 30dB
Scheme B: −10dB
Scheme B: 0dB
Scheme B: 10dB
Scheme B: 20dB
Scheme C: 30dB
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In the single receive antenna case, i.e. N = 1, the value of M log log n

comes from the fact that the transmitter is selecting the maximum SINR from n

values for each beam. For a single receive antenna per user, it is known that the

optimal sum-rate capacity scales as M log log n, and so the scaling is optimal. For

Scheme A in the more general case where 1 < N ≤ M , the sequence of random

variables for each transmit beam seen at the transmitter is x1, . . . , xnN , thus the

dominator in Theorem (1) becomes M log log nN , as pointed out in Section VI,

Case 1 of [SH05]. The following corollary summarizes the more general case.

Corollary 1. ([SH05]) Let M , N ≤M , and ρ be fixed. Then for Scheme A, the

throughput satisfies

lim
n→∞

R

M log log nN
= 1.

It should briefly be noted that a scaling rate of M log log nN is essentially

the same rate as M log log n since N is a constant that inside the double logarithm

becomes inconsequential in the limit as n goes to infinity, i.e.

lim
n→∞

(log log nN − log log n) = 0.

The denominator term in Theorem (1) is determined by the number of

observations that the maximum is taken over. Scheme B feeds back only the
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largest SINR measured at each user at the antenna level. The sequence of random

variables to be maximized over for each beam is then x1, . . . , xMi
, where Mi is the

number of SINR values fed back for the ith beam. This led to the binomial type

expression of the maximum SINR. What is the scaling when the number of terms

to be maximized over is random?

Theorem (1) is concerned with the asymptotic scaling relative to the sum-

rate capacity. Using the strong law of large numbers, as the number of users n

grows, the total number of values fed back for each transmit beam converges to

n
M

. In Scheme B let Yi,n be the sequence of random variables in n denoting the

number of SINR values fed back for the ith beam in a system with n users. Let

θ = 1
M

be the probability that a particular transmit beam is selected. The sequence

of random variables Yi,n are binomially distributed with probability of success θ.

Define Xi,n =
Yi,n
n

. Then this sequence of random variables, by the central limit

theorem, satisfies

lim
n→∞

√
n

(
Xi,n −

1

M

)
⇒ N

(
0,

1

M

(
1− 1

M

))
. (2.14)

Let σ2 = 1
M

(
1− 1

M

)
and define the function g (x, θ) =

[
FSINR(M)

(x)
]nNθ

. The mo-

tivation for these equations is that as the number of users in the system increases,

with high probability the number of SINR values fed back per beam approaches

nθ. The equation g(x, θ) is selected from the term being binomially averaged in

Equation (2.11). The notion of each beam being the maximum for approximately

nθ users with high probability is made rigorous by the Delta Method ([CB01])

√
n [g (x,Xi,n)− g (x, θ)]⇒ N

(
0, σ2

[
d

dθ
g (x, θ)

]2
)
. (2.15)

Plugging the values into this equation yields[(
FSINR)(M)

(x)
)nNXi,n

−
(
FSINR(M)

(x)
)n N

M

]
⇒

N
(

0, n2M

(
1− 1

M

)[
FSINR(M)

(x)
]2nN

M
(

log
(
FSINR(M)

(x)
))2

)
(2.16)

for a particular argument x. Because the distribution FSINR(M)
(x) < 1 for any

finite argument, the variance of the above distribution tends to zero as the number
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of users in the system increases. Therefore, estimating any point of the distribution

of the extreme order statistic of the SINR where only the maximum SINR seen at

each user is fed back can be approximated by
[
FSINR(M)

(x)
]nN
M

. This yields the

following corollary:

Corollary 2. The throughput of Scheme B for fixed M , N ≤ M , and ρ scales

as M log log nN
M

, or

lim
n→∞

R

M log log nN
M

= 1.

Before proving the corollary, note that the effect of having the number of

users grow to infinity is to provide more observation to take the maximum over. In

Scheme B where the feedback is restricted to solely one SINR value, asymptot-

ically in the number of users, the performance scales doubly logarithmically with

nN
M

rather than nN as in Scheme A. As mentioned before, the multiplicative fac-

tor of 1
M

difference between the schemes is inconsequential in the limit since the

growth rate is double logarithmic.

Proof. It is well known ([Dav70], [Gal78]) that if there exists a limiting distribution

of the maximum order statistic, the limiting distribution is one of three types. It

will be shown that the distribution of the asymptotic order statistic of FSINR(M)
(x)

in the terminology of [Dav70], is of type 3, i.e.

Λ3(x) = e−e
−x −∞ < x <∞ . (2.17)

A well-known condition for the asymptotic distribution to be of type 3 is

lim
x→∞

d

dx

[
1− F (x)

f(x)

]
= 0. (2.18)

Carrying out the differentiation, another equivalent condition for the asymptotic

distribution to be of type three is the following:

lim
x→∞

[F (x)− 1] f ′(x)

(f(x))2 = 1 (2.19)

where f(x) is the density of F (x), which exists since our distribution is continuous.

To show that FSINR(M)
is of type 3, it is shown that it satisfies Equation
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(2.19). Since differentiation is a local property of a function and Equation (2.19) is

concerned with the limit as the argument goes to infinity, significant simplification

of the distribution FSINR(M)
can be made because the terms [di(x)]M+ = 0 for x ≥ 1

except when i = M . Therefore the distribution simplifies to

FSINR(M)
(x) = 1− e−

x
ρ

α (x+ 1)M−1
for x ≥ 1 (2.20)

where α =
∏M−1

j=1
j−M
j−M−1

. Equation (2.19) can be verified by taking the first and

second derivatives of Equation (2.20), and thus FSINR(M)
is of type 3.

Notice that Equation (2.20) is equivalent to Equation (2.6) except for the

α term. Following the analysis of [SH05], to satisfy the conditions of Uzgoren’s

theorem ([Uzg]), it must be shown that there exists a un = O(log n) such that

1− FSINR(M)
(un) =

e−
x
ρ

α (x+ 1)M−1
=

1

n
. (2.21)

For sufficiently large n such that Equation (2.20) holds, the existence of a unique un

satsifying Equation (2.21) is guaranteed since e
−xρ

α(x+1)M−1 is continuous and mono-

tonically decreasing. To show that un = O(log n), notice that rearranging Equation

(2.21) yields un
ρ

+ (M − 1) log (1 + un) = logn− (M − 1) logα, where (M − 1) logα

is constant for fixed M . Thus the same conclusion as [SH05] is reached, that

un = ρ log n − ρ(M − 1) log log n + O(log log log n), where the constant term can

be absorbed by the O-notation. With the above results, the fact FSINR(M)
is of

type 3, and the results from Appendix A, Theorem (1) holds exactly as in [SH05],

except for one key difference. In [SH05], the rate scales with the number of users

n, but from the above analysis, for a particular beam, the number of values being

fed back is converging to nN
M

, which yields Corollary (2).

2.5 MMSE Receivers and Feedback

The previous feedback schemes measured the SINR at the individual an-

tenna level. However, since each user in the system has N receive antennas, a

more complex receiver structure can be utilized. It is known that the optimal

linear receiver is the linear MMSE receiver. Using the system model defined in



34

Equations (2.1) - (2.3), the SINR after optimal combining for the ith user and the

jth transmit beam is given by

SINRi,j = φ∗jH
∗
i

[
Hi

(∑
k 6=j

φkφ
∗
k

)
H∗i +

2

ρ
I

]−1

Hiφj (2.22)

where ∗ denotes conjugate transposition and I is the identity matrix.

Once all the SINR values after optimal combining are computed for all the

transmit beams at each receiver, the transmitter requires feedback for user selec-

tion. Prior to any maximization, there are M SINR values after optimal combining

at each user. Immediately one could implement a scheme, call it Scheme C, sim-

ilar to Scheme A and feed back the SINR values for each transmit beam after

linear MMSE combining. Alternatively, if M SINR values represent too much data

to feedback to the transmitter, a scheme similar to Scheme B can be adopted,

call it Scheme D, where the maximum SINR after optimal combining can be sent

back. In Scheme D, the total amount of feedback in the system is reduced to

n analog SINR values and the corresponding n integer beam indices. To analyze

Scheme C and Scheme D requires the analysis of the distribution of the SINR

after optimal combining given by Equation (2.22), which leads to the following

theorem.

Theorem 2. The distribution function of the post-processing SINR given by Equa-

tion (2.22) for the system defined in Equations (2.1) - (2.3) is given by

FMMSE(x) = 1−
exp

(
−x
ρ

)
(1 + x)M−1

N∑
i=1

1 +
∑N−i

j=1

(
M − 1

j

)
xj

(i− 1)!

(
x

ρ

)i−1

. (2.23)

Proof. See Appendix B.

As mentioned in the introduction, the distribution function for the interfer-

ence limited regime is analyzed in [MPP07], while the SINR distribution is derived

for the case M = 4 and N = 2 in [MPP08]. Figure 2.6 shows the theoretical dis-

tribution given by the above theorem versus a monte carlo empirical distribution

for M = 5, N = 2, and SNR = 10dB and they are in agreement.
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Figure 2.6: Theoretical vs. Empirical Distribution for SINR after Optimal Com-
bining for M = 5, N = 2, SNR = 10dB

The analysis of Scheme C is straight forward because at the transmitter

the values fed back from each user for each beam are independent and identically

distributed according to the distribution given by Equation (2.23). Therefore the

results from classical order statistics apply, namely the distribution of the maxi-

mum SINR selected by the transmitter for each beam is given by [FMMSE(x)]n.

The analysis of Scheme D becomes difficult in the same fashion that the

analysis of Scheme B becomes difficult, namely the SINR values after optimal

linear combining are correlated. Unlike the situation in Scheme B where the dis-

tribution of the maximum order statistic of the correlated random variables could

be found, the distribution of the maximum order statistic of the SINR values af-

ter optimal combining at a particular user could not be found. Since the explicit

distribution could not be found, bounds on the true distribution function will be

used. The bounds of interest are the classical Fréchet Bounds

Theorem 3. ([Gal78], The Fréchet Bounds) Let F (X) be an m-dimensional dis-

tribution function with marginals Fj(x), 1 ≤ j ≤ m. Then, for all x1, x2, . . . , xm

max

(
0,

m∑
j=1

Fj (xj)−m+ 1

)
≤ F (x1, x2, . . . , xm) ≤ min (F1 (x1) , . . . , Fm (xm)) .
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The Fréchet Bounds provide control of the unknown joint distribution of

the SINR values after optimal combining, and can provide bounds on the order

statistic because all the marginal distributions are identical:

max (0,M (FMMSE (x)− 1) + 1) ≤ FMaxMMSE(x) ≤ FMMSE(x) (2.24)

where FMaxMMSE is the distribution of the maximum SINR at a user after optimal

combining.

The asymptotic performance of Scheme C and Scheme D are of interest.

To show that Scheme C has optimal scaling asymptotically, it must first be shown

that FMMSE(x) given by Equation (2.23) is of type 3 (Equation (2.17)).

Theorem 4. The limiting distribution of the extreme order statistics drawn from

the distribution FMMSE(x) is of type 3.

Proof. See Appendix C.

Having established the previous theorem, the scaling rate is shown in Ap-

pendix C to satisfying the following corollary:

Corollary 3. For fixed M , N ≤M , and ρ, the throughput for Scheme C asymp-

totically scales as M log log n, or

lim
n→∞

R

M log log n
= 1.

Compared with Scheme A, the asymptotic scaling is log log n rather than

log log nN , but in the limit the extra factor of N becomes insignificant. The loss

of the factor of N comes from the fact that in Scheme C only one SINR value

(after optimal combining) is fed back per user and in Scheme A the SINR value

that was the maximum of N SINR values (without optimal combining) was fed

back, resulting in the extra factor of N .

Theorem (4) establishes that FMMSE(x) is of type 3. The bounds in Equa-

tion (2.24) are in terms of FMMSE(x) and thus are also of type 3 implying the

true unknown distribution of the maximum order statistic is of type 3. As with

Scheme B, the number of SINR values after optimal combining that are max-

imized over at the transmitter in Scheme D is a random quantity, leading to
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binomial averaging. The binomial averaging can be applied to both the bounds

given by Equation (2.24) and the Delta Method arguments will yield an exponent

in both bounds asymptotically approaching n
M

. To get a handle on the asymptotic

scaling, consider the lower and upper bounds in Equation (2.24). The upper bound

scales as M log log n as shown in Appendix C. Substituting the distribution into

the lower bound yields max {0, 1−MR(z)}, where R(z) is defined by Equation

(B.2) in Appendix B. For sufficiently large n, max {0, 1−MR(z)} = 1 −MR(z)

since R(z) is monotonically decreasing to zero, so by the same methods as Ap-

pendix C, the lower bound scales as M log log n. Both the lower and upper bounds

have the same asymptotic scaling rate, yielding the following corollary:

Corollary 4. For fixed M , N ≤M , and ρ, the throughput for Scheme D asymp-

totically scales as M log log n, or

lim
n→∞

R

M log log n
= 1.

The upper bound in Equation (2.24) is very loose. Although it could not be

shown, empirical evidence suggests that the SINR values after optimal combining

are negatively associated. The definition of negative association is as follows:

Definition 1. ([JDP83], Negative Association) Random variables X1, X2, . . . , Xk

are said to be negatively associated if for every pair of disjoint subsets A1, A2 of

{1, 2, . . . , k},
Cov {f1 (Xi, i ∈ A1) , f2 (Xj, j ∈ A2)} ≤ 0

whenever f1 and f2 are both increasing or both decreasing.

Negative association is a multivariate generalization of negative correlation.

The key property of interest is that if X1, . . . , XN are negatively associated random

variables, then

Pr (X1 ≤ x1, . . . , XN ≤ xN) ≤
N∏
i=1

Pr (Xi ≤ xi) .

Applying this to our distribution, we conjecture a tighter upper bound is given by

FMaxMMSE(x) ≤ [FMMSE(x)]M (2.25)
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Figure 2.7: Theoretical vs. Empirical Distribution for SINR after Optimal Com-
bining for M = 5, N = 2, SNR = 10dB

Figure 2.7 shows the bounds versus monte carlo simulations. Although the original

upper bound due to Fréchet is weak, it sufficed in showing the optimal asymptotic

scaling since the bound was of type 3. The tighter hypothesized bound due to

negative association may be of use in numerical computations.

Figure 2.8 shows Scheme C and the upper and lower bounds for Scheme

D. The upper bound is the conjectured bound due to negative association. The

figure shows that the bounds on Scheme D converge as the number of users in-

creases and that they converge to the rate of Scheme C. As with Scheme A

compared with Scheme B, this convergence is expected as the maximum for each

transmit beam will be distributed over users with high probability as the number

of users increases. The throughput also becomes saturated as the SNR increases

and the interference becomes dominant. Comparing Figure 2.5 and Figure 2.8,

utilizing the extra receive antenna for optimal combining rather than just addi-

tional observations yields significant throughput gains at the expense of receive

complexity.
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Figure 2.8: Throughput as a Function of Number of Users for Different Schemes
for M = 5, N = 2 and Various SNRs

2.6 Thresholding the Feedback

Feedback is a precious commodity and the amount of feedback may have

to be reduced to a bare minimum. One method of further reducing the amount

of feedback is to apply a threshold at the receivers, and only send back the SINR

values that exceed the threshold. Intuitively, if the SINR is below a reasonable

threshold, it is very unlikely to be the maximum selected by the transmitter. This

idea is briefly mentioned in [SH05] for Scheme A, where it is mentioned that as

n grows large, the SINR value need only be fed back if it exceeds some constant

threshold η, which is independent of n, to maintain the scaling laws. The rate

lost in a system with a finite number of users is not considered. The analysis in

this section determines the effects on throughput of applying any fixed threshold

to a system with an arbitrary number of users, and then applying that analysis to

show asymptotically there is no loss in throughput by applying any finite threshold.

Additionally, by applying an appropriate threshold, one can trade off throughput

for a reduction in feedback.

It is of interest to see how thresholding the SINR affects the distributions

over which the expectations are taken to determine the throughput of the previous

schemes. No closed form expression for the expectation could be found due to the
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complicated nature of the distributions. The effect of thresholding is to truncate

the underlying cdf of the SINRs observed at the users in the following manner:

Fthreshold(x) =

{
F (xth) x ≤ xth

F (x) x > xth
(2.26)

where xth is the threshold. All SINR values less than the threshold are not fed

back, which can be viewed as a mapping to zero throughput, resulting in the above

truncation.

For concreteness, consider Scheme A. Applying Equation (2.12) yields

R ≈M

∫ ∞
0

1

1 + x

(
1− Fs(x)nN

)
dx (2.27)

After thresholding, the throughput of the scheme is

Rthreshold ≈M

[∫ xth

0

1

1 + x

(
1− [Fs (xth)]

nN
)
dx+

∫ ∞
xth

1

1 + x

(
1− Fs(x)nN

)
dx

]
= M

[
log (1 + xth)

(
1− [Fs (xth)]

nN
)

+

∫ ∞
xth

1

1 + x

(
1− Fs(x)nN

)
dx

]
,

which is a constant term plus an integral.

The loss in throughput due to thresholding can be expressed as

R−Rthreshold = M

∫ ∞
0

1

1 + x
[Fthreshold − Fmax] dx

= M

∫ xth

0

1

1 + x
[Fmax (xth)− Fmax(x)] dx+

M

∫ ∞
xth

1

1 + x
[Fmax(x)− Fmax(x)] dx

= M

[
log (1 + xth)Fmax (xth)−

∫ xth

0

1

1 + x
Fmax(x)dx

]
≤M log (1 + xth)Fmax (xth) ,

where Fmax could be any of the maximum distributions derived earlier. As the

number of users grows, the upper bound on the throughput loss goes to zero for

all the distributions discussed, since for a finite threshold, Fmax (xth) → 0 as the

number of users increases. Therefore, asymptotically, if the threshold is finite, the

scaling laws derived earlier hold.
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Figure 2.9: Throughput for Various Threshold Levels

For Scheme A, the number of SINR values not sent back due to threshold-

ing is nMFs (xth), that is the Pr [SINR ≤ xth] = Fs (xth) multiplied by the number

of possible values that could be sent back. Viewing it another way, it is a binomial

experiment with nM trials and the probability of success being Fs (xth). Similarly,

using the cdf of the SINR after optimal combining, the number of SINR values

saved for Scheme C is on average nMFMMSE (xth). For Scheme B the amount

of savings is on average n
[
FSINR(M)

(xth)
]N

and the savings for Scheme D can

be bounded using the Fréchet Bounds.

Figure 2.9 shows Scheme B without thresholding against Scheme A for

various levels of thresholding. For small thresholds, there is almost no change in

throughput performance, whereas for the higher thresholds, large losses are suf-

fered for small numbers of users. As the number of users is increased, there is no

loss in performance as expected. Scheme B performs better than Scheme A for

the threshold of 1 for small to moderate number of users, but does not uniformly

bound the thresholded version of Scheme A. It is not quite a far comparison since

Scheme B deterministically feeds back only one SINR value and the associated

beam index, while applying a threshold to Scheme A yields a reduction in feed-

back that is a random variable. In this vein, it may be of interest to design the

threshold to achieve an average amount of feedback per fading period.
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2.7 Conclusion

This chapter is concerned with a random beamforming scheme that puts

a premium on the amount of feedback in the system. To first reduce the amount

of feedback, a metric was chosen that captures the quality of the channel, and

that metric was the SINR, and has been motivated by its use in the formula for

throughput of the channel. With a good metric chosen, a few schemes that feed

back this SINR information are considered.

First, the scheme in [SH05] (Scheme A) was reviewed to provide back-

ground and context for different novel schemes. Scheme B suggests utilizing

knowledge at the receiver and send back the maximum SINR observed at each

user over all beams. This reduces the amount of feedback in the system to n SINR

values. Since each user has N receive antennas, it is possible to perform optimal

combining at the receivers. The distribution for the SINR after optimal combin-

ing is derived. There are two schemes for utilizing this optimally combined SINR

value: either all M SINRs could be fed back per user (Scheme C), or send back

only the maximum SINR at each user leading to system total of n feedback values

(Scheme D). The asymptotic scaling of all the schemes is shown to be essentially

M log log n.

Finally, thresholding was considered as another means of reducing the

amount of feedback. If the SINR value to be sent back in any scheme lies below

the set threshold, that SINR value is not sent back at all. Asymptotically in the

number of users, the throughput lost due to thresholding at any finite level is

shown to go to zero.

This chapter is a reprint of a paper coauthored with Bhaskar D. Rao and

appears in the March 2010 issue of IEEE Transactions on Signal Processing un-

der the title “Reduced Feedback Schemes Using Random Beamforming in MIMO

Broadcast Channels”. Sections of this chapter also appear in “On the Capacity of

MIMO Broadcast Channels with Reduced Feedback by Antenna Selection” in Asilo-

mar Conference on Signals Systems, and Computers, March 2008 and “Feedback

reduction in MIMO broadcast channels with LMMSE receivers” in ICASSP 2010.

Both of these works are also coauthored with Professor Bhaskar D. Rao.



Chapter 3

Reducing Feedback in Broadcast

Channels via Thresholding

3.1 Outline

In a Gaussian multiple-input multiple-output (MIMO) broadcast channel

with random transmit beamforming and a greedy scheduling algorithm, the ques-

tion of which receivers should feed back their channel state information (CSI) is

investigated. A thresholding mechanism is applied to the CSI such that receivers

observing CSI lower than the threshold do not feed back. Thresholding is of in-

terest because it reduces the unwanted overhead, which is necessary to achieve

multiuser diversity, of CSI feedback in broadcast channels. Utilizing the theory

of convergence of types, it is shown that if the thresholding function T (n) scales

slower than log n, i.e. T (n) ∈ o(log n), that asymptotically in the number of users,

no performance is lost compared to the system without a threshold. Conversely,

using the asymptotic stability of order statistics, it is shown that if the thresh-

olding function T (n) grows faster than log n, i.e. T (n) ∈ ω(log n), eventually no

user in the system will feed back their CSI and all multiuser diversity is lost. For

a finite number of users, utilizing the closed form SINR distribution expressions,

thresholds are designed to meet specific design criterion as a function of the total

number of receivers in the system. Three design criterion are considered: limiting

43
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the probability that no receivers feed back information for any transmit direction,

limiting the average number of receivers feeding back SINR information and lim-

iting the rate loss due to thresholding. The material in this chapter is work which

in preparation for submission to the IEEE Transactions on Signal Processing un-

der the title “Reducing Feedback in Broadcast Channels via Thresholding” and

material submitted to Asilomar Conference on Signals, Systems, and Computers

2011 under the title “Feedback Reduction by Thresholding in Multi-User Broadcast

Channels: Design and Limits”.

3.2 Introduction

The multiuser broadcast channel has been the subject of intense study for

many years as it has numerous direct applications to modern technologies such as

the cell phone downlink channel. Great strides have been taken in characterizing

the theoretical limits of the broadcast channel, especially the vector Gaussian

broadcast channel. Specifically there has been an explosion of work regarding the

sum-rate capacity of the vector Gaussian broadcast channel starting with [CS03]

and then followed up by [VT03], [VJG03], and [YC04]. The capacity region of the

Gaussian vector broadcast channel was characterized in [WSS06]. While of great

theoretical importance, many of the schemes used to achieve the theoretical optimal

capacity are too complex or impractical to implement in real systems. One of the

greatest hinderances in achieving the theoretical optimum is having complete CSI

for all of the users in the multiuser broadcast channel available at the transmitter.

It is well known that without CSI at the transmitter, the system cannot achieve

multiuser diversity, which is a significant benefit of multiuser systems. In order to

reap the benefits of the more advanced multiuser MIMO architecture, CSI feedback

from the receivers to the transmitter is essential.

To address this critical problem, researchers have developed different meth-

ods of quantifying important information to feedback and how to best feed back

this information. The problem becomes more complicated when one also includes

considerations about the reliability of the CSI due to channel estimation errors and



45

channel dynamics. In [IR07],[IAR09] and [IR10] the effects of imperfect channel

estimation, feedback delay, and finite-rate quantization are considered on bit, sym-

bol, and packet error probabilities in multiple-input single-output (MISO) chan-

nels. The effects of imperfect channel estimation and feedback delay on transmit

beamforming is considered in [MZ07] and [MLS08].

In this chapter, channel estimation is assumed to be perfect and the feed-

back channel is delay and error free. Much reseach has been conducted under these

assumptions. In [Jin06], the channel vector from the multi-antenna transmitter to

the single receive antenna users is quantized using a random vector quantizer and

the performance is analyzed while [LHS03] considers codebook design using the

Grassmannian manifold. The asymptotic optimality of zero-forcing beamforming

is studied in [YG06a]. The question of how much feedback is required so that the

system does not reach a sum-rate ceiling is considered in [BK06].

The first steps towards thresholding feedback are in the works [FFM03,

GA03, GA04] which consider one bit feedback schemes where a binary decision is

made as to whether or not the channel is in a good or bad state for transmission.

These works were later extended in [VHO07], where the feedback channel is used

multiple times per coherence time to allow for refinement of the scheduling deci-

sion. The rate enhancement due to additional feedback bits is analyzed in [SN07].

Additional work along these lines can be found in [YAHA05] as well as an overview

of feedback systems in general in [LJL+08].

The tranmission scheme analyzed in this chapter is the random beamform-

ing scheme proposed in [SH05]. The main idea is for the transmitter to transmit

on the basis vectors of a random orthonormal basis and each receiver measures the

SINR along each of the random directions. The receivers feed back their measured

SINR values and the transmitter schedules the users with the largest SINR value

for each orthonormal direction. In this transmission scheme, all of the channel

information is captured in the SINR values. This scheme is extended in [PR10a]

in several ways, including more advanced receive structures, namely LMMSE re-

ceivers, when each user is allowed multiple receive antennas. The main result

of these works is that random beamforming is simple yet, asymptotically in the
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number of users, achieves the optimal sum-rate throughput scaling.

In the aforementioned works, all the users in the system feed back some

form of CSI. This chapter addresses the question of which user should feed back

CSI. To answer this question, the random beamforming scheme is considered. In

the random beamforming scheme, the statistics of the SINR values, which is the

CSI, are known (e.g. see [SH05, PR10a]). With knowledge of the CSI statistics,

consider the example where a particular user in the system observers a small SINR

value. Should that user feed back this small SINR value? If there are a large

number of users in the system, then it is highly probable that someone will have a

larger SINR value. In this case it does not affect the system if the small SINR value

is not fed back due to the scheduling algorithm always selecting the largest SINR.

On the other hand, it is always possible that every other user in the system has a

smaller SINR value, in which case not feeding back will prevent the system from

achieving the best throughput. The goal of this chapter is to design a threshold

that achieves certain performance metrics as a function of the number of users

in the system such that a user feeds back its observed SINR value if the value is

above the threshold and does not feed back if the SINR is below the threshold. By

allowing users to not feed back, transmit power can be saved as well as relieving

congestion on the radio resource.

The contributions of this chapter can be broken into two parts. First,

conditions on the scaling rate of the threshold T (n) are considered as the number

of users n in the system asymptotically grows to infinity. It is shown that if the

threshold scales as o(log n), that asymptotically there is no loss in performances

as compared to the case where every user feeds back their SINR information.

Conversely, it is shown that if the threshold T (n) scales as ω(log n), that eventually

no user in the system will feed back their SINR information, i.e. asymptotically

no user in the system exceeds the threshold. In this case the transmitter has no

CSI information and it is known that multiuser diversity cannot be achieved. The

second part of the chapter considers explicit design of the thresholding function as

a function of the number of users in the system when the number of users is finite.

For a finite number of users, it is always possible that every user will be beneath
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any selected threshold and thus no one will feed back. Therefore, the design of

the threshold will be with respect to achieving certain design criterion. In this

chapter, three metrics are considered: limiting the probability that no user in the

system feeds back for any transmit direction, limiting the average number of users

feeding back and limiting the rate loss due to thresholding.

The organization of the chapter is as follows: the system model and random

beamforming transmit scheme are discussed in Section 3.3. Section 3.4 analyzes

the asymptotic scaling rate of the thresholding function. Section 3.5 addresses the

design of the thresholding function in the case of a finite number of users. Finally,

Section 3.6 summarizes the results of this chapter.

3.3 System Model and Random Beamforming

In this section the system model is described. Under the given system

model, the random beamforming technique first proposed in [SH05] is outlined.

The key implications of this work will be discussed as well as extensions found in

[PR10a].

3.3.1 System Model

A block fading channel model is assumed for the Gaussian broadcast chan-

nel. The transmitter has M transmit antennas and there are n receivers (users),

each with N receive antennas. It is assumed that n � M and M ≥ N , which is

typically the case in a cellular system. Let s(t) ∈ CM×1 be the transmitted vector

of symbols at time slot t and yi(t) ∈ CN×1 be the received symbols by the ith

user at time slot t. The following model is used for the input-output relationship

between the transmitter and the ith user:

yi(t) =
√
ρiHis(t) + wi(t), i = 1, . . . , n. (3.1)

Hi ∈ CN×M is the complex channel matrix which is assumed to be known at

the receiver, wi ∈ CN×1 is the white additive noise, and the elements of Hi and

wi are i.i.d. complex Gaussians with zero mean and unit variance. This is the
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standard Rayleigh fading model, where the channel gain between every transmit-

receive antenna pair is a complex circularly symmetric normal random variable.

The transmit power is chosen to be M , i.e. E{s∗s} = M , so that the normal-

ized power per antenna is one. The signal-to-noise ratio (SNR) at the receiver

is E{ρi|His|2} = Mρi and ρi is the SNR of the ith user. It is assumed that the

network is homogeneous, thus ρi = ρ ∀i.

3.3.2 Random Beamforming

The random beamforming transmit scheme proposed in [SH05] is the scheme

analyzed in this chapter. The key elements of this work, as well as extensions found

in [PR10a], are now described.

The random beamforming transmit scheme involves generating an M di-

mensional random orthonormal basis from an isotropic distribution, with basis

vectors φm ∈ CM×1 for m = 1, . . . ,M . Let sm(t) be the mth transmit symbol at

time t, then the total transmit signal at time slot t is given by

s(t) =
M∑
m=1

φm(t)sm(t). (3.2)

The received signal at the ith user is given by

yi(t) =
M∑
m=1

√
ρHi(t)φm(t)sm(t) + wi(t). (3.3)

In the original formulation in [SH05], each of the N receive antennas at each user

measure the SINR for each of the M transmit directions and the maximum of the

observed SINR values for each transmit direction is fed back. Looking at Figure

3.1, which shows the SINR values for each receive antenna/transmit direction

pair, this scheme feeds back the maximum SINR in each column. The transmitter

then schedules the users experiencing the largest SINR for each transmit direction,

leading to maximal order statistics.

It is assumed that the ith user knows the quantity Hi(t)φm(t) from Equation

3.3 for each transmit direction. With this knowledge, the SINR observed at the
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Figure 3.1: SINR observations at a single user for M = 4, N = 3

jth receive antenna of the ith user for the mth transmit direction is given by the

following equation:

SINRi,j,m =
|Hi,j(t)φm(t)|2

2
ρ

+
∑

k 6=m |Hi,j(t)φk(t)|2
. (3.4)

Hi,j is the jth row of the ith user’s channel matrix. The orthonormal beamforming

vectors and i.i.d. zero mean and unit variance complex Gaussian elements of Hi

imply the numerator in Equation 3.4 is distributed as a χ2(2) random variable and

the denominator is an independent χ2(2(M − 1)) random variable.

When each receiver has a single receive antenna, i.e. N = 1, then under the

assumed system model, it is shown in [SH05] that the distribution of the SINRs

at the receive antennas is given by

fSINR(x) =
e−

x
ρ

(1 + x)M

(
1

ρ
(1 + x) +M − 1

)
u(x), (3.5)

where u(x) is the unit step function. From now on, the u(x) will be dropped from

the SINR distribution and SINR density expressions with the understanding that

all the SINR random variables of interest are nonnegative. Integrating the density

in Equation 3.5 yields the distribution function for the SINR random variables:

FSINR(x) = 1− e−
x
ρ

(1 + x)M−1
. (3.6)

The main result of [SH05] is that asymptotically random beamforming has

the optimal sum-rate throughput scaling. More specifically, the sum-rate through-

put of the random beamforming technique R asymptotically scales at a rate of

M log log n, which is the theoretical optimal scaling rate. This theorem is now

stated:
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Theorem 5. ([SH05]) Let M and ρ be fixed and N = 1. Then

lim
n→∞

R

M log log n
= 1 (3.7)

where R is the throughput of the random beamforming technique.

If there are N ≥ 1 receive antennas at each user, the additional antennas

can be utilized in different ways. In [SH05], each receive antenna at a given user

is considered an independent user, in which case all the SINRs observed at each

antenna are distributed according to the distribution function in Equation 3.6.

An extension considered in [PR10a] is to feedback only the largest SINR observed

across all receive antennas and over all transmit directions, thus limiting the feed-

back to a single SINR value per user (and the index of the transmit direction that

generated the largest SINR value) and reducing the total amount of feedback in

the system. Once again referring to Figure 3.1, this scheme corresponds to feeding

back the largest SINR value in the array. It is shown in [PR10a] that the distri-

bution of the SINR value fed back is given by
[
FSINR(M)

(x)
]N

where FSINR(M)
(x)

is given by

FSINR(M)
(x) = 1−

M∑
i=1

[di(x)]M+ exp
(
− xc
di(x)

)
Ai(x)

(3.8)

and where di(x) = 2[1−x(M−i)]
M−i+1

, Ai(x) = di(x)
∏M

j 6=i (di(x)− dj(x)), and [·]+ is the

positive part of the argument.

The extra receive antennas at each user can also be utilized by implementing

a more complicated receive architecture such as an LMMSE receiver. With this

architecture, the receiver will measure the SINR after LMMSE reception along

each transmit direction and feed back the values. Under the given system model,

it is shown in [PR10a] that the distribution of SINR after LMMSE reception is

given by

FMMSE(x) = 1−
exp

(
−x
ρ

)
(1 + x)M−1

N∑
i=1

1 +
∑N−i

j=1

(
M − 1

j

)
xj

(i− 1)!

(
x

ρ

)i−1

. (3.9)

Using these distributions, it is shown in [PR10a] that the results of Theorem 5

hold for these alternative feed back schemes and architectures. With the previous
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results now reviewed, the properties of the distribution functions can be used to

ask questions about designing thresholds to limit which users feed back CSI and

the effects these thresholds have on the system performance.

3.4 Thresholding Asymptotically in the Number

of Users

Let T (n) be the function that determines the threshold as a function of

the number of users n in the system. For a fixed n, users experiencing a SINR

less than T (n) do not report back their observed SINRs and users experiencing

SINR values larger than T (n) feed back their observed values. In this section,

the question analyzed is how fast can the thresholding function T (n) grow and

still have the thresholded system achieve the same optimal asymptotic sum-rate

scaling as the non-thresholded system? The theory of extreme value distributions

and the convergence of types are essential to answering this question and will now

be briefly reviewed.

3.4.1 Extreme Value Distributions

The convergence of types theorem is critical for the analysis of extreme

value distributions and is now stated.

Theorem 6. (Convergence of Types)

Suppose U(x) and V (x) are two distribution function neither of which concentrates

at a point. Suppose for n ≥ 1, Fn is a distribution, an ≥ 0, bn ∈ R, αn ≥ 0, βn ∈ R
and

Fn (anx+ bn)→ U(x)

Fn (αnx+ βn)→ V (x)

weakly. If

αn
an
→ A > 0

βn−bn
an
→ B ∈ R
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then

V (x) = U(Ax+B).

Let X1, . . . , Xn be i.i.d. random variables with common distribution func-

tion F (x) and let Mn =
∨n
i=1Xi. The main theorem concerning extreme value

distributions states that if a nondegenerate limiting distribution exists for Mn,

then the limiting distribution converges to one of three classes of types:

Theorem 7. (Gnedenko, 1943)

Suppose there exists an > 0, bn ∈ R, n ≥ 1 such that

P [(Mn − bn)/an ≤ x] = F n(anx+ bn)→ G(x),

weakly as n → ∞, where G is assumed nondegenerate. Then G is of the type of

one of the following three classes:

Type 1) Φα(x) =

{
0 x < 0

exp {−x−α} x ≥ 0
for some α > 0.

Type 2) Ψα(x) =

{
exp {−(−x)α} x < 0

1 x ≥ 0
for some α > 0.

Type 3) Λ(x) = exp {−e−x} x ∈ R

The asymptotic scaling of the sum-rate throughput for the random beam-

forming scheme is established by showing the SINR values scheduled fall in the

domain of attraction of the Type 3 extreme value distribution given in Theorem

7. Formally, FSINR ∈ D(Λ), i.e. the distribution function for the SINR, lies

in the domain of attraction of Type 3. Once the extreme value distribution is

established, the constants an and bn are determined and used to show that the

sum-rate throughput of the random beamforming scheme scaled optimally. The

selection of the sequence an and bn is not unique and the following lemma shows

the relationship between any selection of sequences that satsify F ∈ D(Λ).

Lemma 1. Suppose F ∈ D(G), where G is one of the limiting distributions

from Gnedenko’s Theorem, and let an > 0, bn ∈ R, αn > 0, and βn ∈ R sat-

isfy F n (anx+ bn) → G(x) and F n (αnx+ βn) → G(x). Then an ∼ αn (i.e.

limn→∞ an/αn = 1) and (βn − bn) ∈ o (an).
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Proof. The existence of an, bn, αn and βn is guaranteed by Gnedeno’s Theorem

since F ∈ D(G). Also by Gnedenko’s Theorem, G is the only possible limiting

distribution that F approaches since F ∈ D(G). Since F n (anx+ bn)→ G(x) and

F n (αnx+ βn)→ G(x), by the Convergence of Types Theorem and letting G play

the role of U and V yields the constants A = 1 and B = 0. Thus, also by the

Convergence of Types Theorem, αn
an
→ 1 and βn−bn

an
→ 0, which gives the desired

result.

3.4.2 Sufficient Conditions on the Scaling Rate of the

Thresholding Function

The effects of thresholding on the distribution function FSINR must be

understood to design a threshold that achieves optimal asymptotic scaling of the

sum-rate throughput. In [PR10a], it is observed that that the threshold truncates

the distribution function of the SINR values fed back to the transmitter in the

following manner:

F threshold
SINR (x) =


FSINR(x) x ≥ xthreshold

FSINR (xthreshold) 0 ≤ x < xthreshold

0 x < 0

(3.10)

Equation 3.10 states that the probablity mass less than xthreshold, the threshold

value, concentrates at zero, and this is the probability that the user does not feed

back. The mass concentrates at zero because this is the lowest possible value

that the nonnegative SINR random variables can attain. With this mapping, the

values that do not exceed the threshold do not affect the scheduling decision since

they are assumed to be the smallest possible value. To generalize the truncation

from nonnegative random variables, let x1 = inf {x : F (x) > 0} for an arbitrary

distribution function F , i.e. the left end point of the support of F . Thresholding

an arbitrary distribution function produces the following truncation:

F threshold(x) =


F (x) x ≥ xthreshold

F (xthreshold) x1 ≤ x < xthreshold

0 x < x1

(3.11)
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Figure 3.2: Uniform Distribution Truncated at xthreshold = 0.5

Figure 3.2 shows the truncation of the uniform distribution at xthreshold = 0.5.

The probability mass less than xthreshold = 0.5 maps to the left end point of the

support, which in this case is x1 = 0.

The effect of thresholding by truncation on a distribution function has been

mathematically quantified. Time will now be spent to show that this mathematical

definition corresponds with the goal of reducing feedback by implementation of

a threshold. Let X be a random variable drawn from a distribution function

F ∈ D(Λ). Then the distribution function from Equation 3.11 corresponds to the

following random variable Y :

Y =

{
X X ≥ xthreshold

x1 X < xthreshold
(3.12)

From an engineering perspective, this formulation is motivated by the following

scenario. Let there be n users, where user i makes an observation Xi drawn i.i.d.

from F ∈ D(Λ). Each user decides to send back their observation Xi if it exceeds

some threshold xthreshold to a central unit, and the central unit has the task of

finding the maximum observation. The users that did not report their observations

because they did not exceed the threshold should not effect the decision of finding

the maximum. Thus if a user did not report a value, their observation is assumed to

be x1. By taking on the lowest possible value, it cannot affect the task of finding the

maximum value among the users that did feed back, and this motivates Equation
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3.11.

Remark: If x1 = −∞, then F threshold(x) given by Equation 3.11 is not a proper

distribution function because there is non-zero probability mass at −∞. This will

not pose a problem in the following analysis. Additionally, any point x2 chosen

such that x1 ≤ x2 < xthreshold could be selected since such a selection would not

affect the task of finding the maximum among the fed back values, all of which

exceed x2.

In [PR10a], it is shown that any finite threshold does not affect the asymp-

totic performance. The goal here is to design a threshold as a function of the

number of users, T (n), that grows as the number of users grows, and still has

the desired asymptotic scaling. The following theorem is the main result of this

section and provides conditions on the scaling rate of the threshold as a function

of the number of users that guarantee optimal asymtotic scaling of the sum-rate

throughput.

Theorem 8. Consider the system when N = 1, i.e. each user has a single receive

antenna, under the model and random beamforming scheme described in Section

3.3. If the thresholding function T (n) ∈ o(log n), then the sum-rate throughput of

the system satisfies R
M log logn

→ 1 .

Before presenting the proof of Theorem 8, the following lemma is required.

Lemma 2. Suppose F ∈ D(Λ) with the sequence of coefficients an > 0 and bn ∈ R
satisfying F n (anx+ bn) → G(x) and the left end point of the support is x1. Let

Xi be drawn i.i.d. from F and let Mn =
∨n
i=1Xi. Also let T (n) be the threshold as

a function of n. Then F threshold ∈ D(Λ) if and only if T (n)−bn
an

→ −∞.

Proof. ⇐: Suppose T (n)−bn
an

→ −∞. Let Yi be drawn i.i.d. from F threshold and let



56

M th
n =

∨n
i=1 Yi. Then

P

[
M th

n − bn
an

≤ x

]
=

[
F threshold(anx+ bn)

]n
=


F n(anx+ bn) anx+ bn ≥ T (n)

F n(T (n)) x1 ≤ anx+ bn < T (n)

0 anx+ bn < x1

As n → ∞, by the hypothesis T (n)−bn
an

→ −∞, so anx + bn ≥ T (n) for all x ∈ R,

and thus
[
F threhsold(anx+ bn)

]n → F n(anx + bn) → G(x) as n → ∞ since F ∈
D(Λ). To show that this result holds regardless of which sequence of coefficients

were chosen, suppose αn and βn are another sequence of coefficients satisfying

F n(αnx + bn)→ G(x). By Lemma 1, αn
an
→ 1 and βn−bn

an
→ 0. Substituting in the

new coefficients yields

T (n)− βn
αn

=

(
1/an
1/an

)
·
(
T (n)− βn + (bn − bn)

αn

)
=

[
1
αn
an

]
·
(
T (n)− bn

an
− βn − bn

an

)
→ T (n)− bn

an
→ −∞

Thus any coefficients satisfying F ∈ D(Λ) work.

⇒: Suppose F threshold ∈ D(Λ). Then there exists an > 0 and bn ∈ R such that[
F threshold(anx+ bn)

]n → G(x) = e−e
−x

for all x ∈ R. As before

[
F threshold(anx+ bn)

]n
=


F n(anx+ bn) anx+ bn ≥ T (n)

F n(T (n)) x1 ≤ anx+ bn < T (n)

0 anx+ bn < x1

Let limn→∞
T (n)−bn

an
= c ∈ [−∞,∞], then in the limit as n → ∞, the above

expression becomes

[
F threshold(anx+ bn)

]n → {
G(x) x ≥ c

G(c) x < c

where the left end point of the support need not be of concern because the left

end point of the support of G(x) is −∞. The only way the above expression can
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converge to G(x) for all x ∈ R is if c = −∞, and thus limn→∞
T (n)−bn

an
→ −∞, the

desired result.

Lemma 2 shows that if T (n) scales sufficiently slowly, the convergence to

the extreme value distribution Λ(x) is unaffected. Having established Lemma 2,

Theorem 8 can now be proven.

Proof. When N = 1, the distribution of the SINR is given by Equation 3.6 in

Section 3.3. It is also shown in [SH05] that FSINR ∈ D(Λ) and that the so called

auxiliary function f satifies

f(t) =
1− FSINR(t)

F
′
SINR(t)

→ ρ

where F
′
SINR(t) is the density given by Equation 3.5. Thus 1 − FSINR(x) ∼

ρF
′
SINR(x). Using techniques from [Res87] (section 1.5), suitable coefficients an

and bn can be found so that F n
SINR(anx + bn) → G(x). The first step is to solve

for bn by solving ρF
′
SINR(bn) = n−1. Plugging in the density and taking the log of

both sides produces

− log e−bn/ρ −M log(1 + bn) + log(1 + bn + ρ(M − 1)) = − log n

⇒ −bn
ρ
−M log(1 + bn) + log(1 + bn + ρ(M − 1)) = − log n

⇒ bn
ρ

+M log(1 + bn)− log(1 + bn + ρ(M − 1)) = log n.

As n → ∞, bn → ∞, so 1
ρ
bn dominates the above expression and 1

ρ
bn ∼ log n ⇒

bn ∼ ρ log n. It is known, e.g. [Res87], that a suitable choice of an for this case is

f(bn), where f is the aforementioned auxiliary function, thus a suitable sequence

is an = ρ for all n. The bn sequence can be written as bn = ρ log n + rn where rn

is the remainder and rn ∈ o(log n) in this case. Plugging in this formulation of bn

yields

ρ logn+rn
ρ

+M log(1 + ρ log n+ rn)− log(1 + ρ log n+ rn + ρ(M − 1)) = log n

⇒ rn + ρM log(1 + ρ log n+ rn)− ρ log(1 + ρ log n+ rn + ρ(M − 1)) = 0
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and solving for rn produces

rn = −ρM log log n− ρM log log

(
ρ+

1 + rn
log n

)
+

ρ log log n+ ρ log log

(
ρ+

1 + rn + ρ(M − 1)

log n

)
= −ρ(M − 1) log log n+ o(1).

Plugging the remainder expression into bn yields

bn = ρ log n− ρ(M − 1) log log n+ o(1)

which is essentially the same expression found in [SH05], where it is called un. This

sequence proved to be the key fact used in determining the sum-rate scaling result

in their work.

With a suitable choice of {an} and {bn} established, Lemma 2 can be uti-

lized to determine the scaling rate of the threshold so that the asymptotic sum-rate

throughput scales optimally. Observe that

lim
n→∞

hn − bn
an

= lim
n→∞

T (n)− (ρ log n− ρ(M − 1) log log n+ o(1))

ρ

= lim
n→∞

(
T (n)

ρ
− ρ log n− ρ(M − 1) log log n+ o(1)

ρ

)
= lim

n→∞

(
T (n)

ρ
− (log n− (M − 1) log log n+ o(1))

)
→ −∞.

Therefore T (n) ∈ o(log n) allows
[
F threshold
SINR (anx+ bn)

]n → G(x) and all the con-

clusions derived in [SH05] using FSINR ∈ D(Λ) and {bn} hold. That is, selecting

T (n) ∈ o(log n) still achieves the optimal sum-rate scaling rate.

3.4.3 Necessary Conditions on the Scaling Rate of the

Thresholding Function

In the previous section, it is shown how the threshold must scale in order

that F remains in the domain of attraction D(Λ). This provides a sufficient con-

dition for the scaling rate of the threshold such that all previously derived results
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based on the extreme value distribution hold. The goal of this section is finding a

necessary condition for the scaling rate of the threshold T (n) such that the asymp-

totic scaling rate of the sum-rate throughput of the random beamforming scheme

is optimal. To state it another way, it may be possible for T (n) to grow faster than

the rate required to keep F ∈ D(Λ) and still have the sum-rate throughput of the

truncated scheme be optimal.

A different method of analysis will be used to address the necessary condi-

tions. The method is based upon the work in [RT73]. The following definition is

essential for the analysis that follows:

Definition 2. [RT73] Let a sequence of random variables {Xn, n ≥ 1} be un-

bounded above and let Mn =
∨n
i=1Xi. The sequence {Mn} is almost surely rela-

tively stable (or stable for short) if there exist constants cn such that Mn/cn → 1

almost surely as n→∞.

In this section it will be shown that if X1, . . . , Xn are drawn i.i.d. from

FSINR, then the maximum of the SINRs, Mn, is stable, and to find the associated

constants cn. With the known sequence cn, another sequence dn can be chosen such

that limn→∞
cn
dn
→ 0, or cn ∈ o (dn). If dn is substituted for cn, then limn→∞

Mn

dn
→ 0

almost surely. This shows that the maximum of the SINRs is growing slower than

the sequence dn. If the thresholding function T (n) is selected such that T (n) ∼ dn,

eventually no user in the system will exceed the threshold and thus no users feed

back. If no user feeds back SINR information, there is no channel state information

at the transmitter, and in this case it is well known that multiuser diversity cannot

be achieved. Thus, a threshold T (n) ∼ dn will cause the random beamforming

scheduling algorithm to asymptotically fail.

Having discussed how stability plays into the analysis of the random beam-

forming scheduling algorithm, the following theorem states how fast is too fast for

the thresholding function to scale.

Theorem 9. Let the SINR observed at each user be distributed i.i.d. according to

FSINR. Then if T (n) ∈ ω(log n), asymptotically no user exceeds the threshold and

consequently all multiuser diversity is lost.
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Proof. It must now be shown that Mn when Xi ∼ FSINR is in fact stable and find

the appropriate constants for stability. The following theorem of Resnick’s provide

necessary and sufficient conditions for stability.

Theorem 10. [RT73] Let {Xn, n ≥ 1} be i.i.d. random variables with common

distribution function F , where F (x) < 1 for all x. There exist suitable normalizing

constants cn, n ≥ 1 such that Mn/cn → 1 almost surely as n→∞ if and only if∫ ∞
1

dF (x)

1− F ((1− ε)x)
<∞

for all 1 > ε > 0.

The condition that F (x) < 1 for all x means that the random variable

is unbounded from above, which is required in Definition 2. To verify Theorem

10 when Xi ∼ FSINR, substitute in the distribution function and density from

Equations 3.5 and 3.6 into Theorem 10:

∫ ∞
1

e−x/ρ

(1+x)M

(
1
ρ
(1 + x) +M − 1

)
1−

(
1− e−(1−ε)x/ρ

(1+(1−ε)x)M−1

) dx =

∫ ∞
1

e
−xρ

(1+x)M

(
1
ρ
(1 + x) +M − 1

)
e−(1−ε)x/ρ

(1+(1−ε)x)M−1

dx

=

∫ ∞
1

e−
x
ρ
ε

(1 + x)M
(1 + (1− ε)x)M−1

(
1

ρ
(1 + x) +M − 1

)
dx

≤
∫ ∞

1

e−
x
ρ
ε

(1 + x)M
(1 + x)M−1

(
1

ρ
(1 + x) +M − 1

)
dx since 0 < ε < 1

=

∫ ∞
1

e−
x
ρ
ε

1 + x

(
1

ρ
(1 + x) +M − 1

)
<∞

Thus Mn, the maximum of n SINR observations, is stable. In the proof

of Theorem 10 in [RT73], it is shown that the coefficients cn ∼ µn ≡ F−1(1 −
n−1) are suitable for stability to hold. Since distribution functions need only

be right continuous, the inverse is defined as F−1(x) = inf{y|F (y) ≥ x}. In

the SINR distribution of interest, the distribution function from Equation 3.6 is

continuous. Similar to example (viii) in [RT73], the coefficients cn will be found

for this distribution. Define the function R(x) = − log(1 − F (x)) and note µn ≡
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R−1(log n). Thus for FSINR, R(x) can be calculated:

R(x) = − log(1− FSINR(x))

= − log

(
e−x/ρ

(1 + x)M−1

)
= − log(e−x/ρ) + log(1 + x)M−1

=
x

ρ
+ (M − 1) log(1 + x)

∼ x

ρ
as x→∞

and therefore R−1(x) ∼ ρx and a suitable sequence cn is R−1(log n) = ρ log n.

Thus, if the threshold function T (n) is selected such that limn→∞
ρ logn
T (n)

→ 0,

or T (n) ∈ ω(log n), then eventually no user in the system will feed back and

all multiuser diversity (and thus optimal sum-rate scaling) is lost, proving the

theorem.

Theorem 9, along with the conclusion from Section 3.4.2 provide an inter-

esting result. Section 3.4.2 states that if T (n) ∈ o(log n), then optimal scaling

still occurs, but the previous result states that if T (n) ∈ ω(log n), that optimal

scaling fails. Thus, any threshold T (n) ∈ O(log n) provides a kind of bound-

ary between thresholds that allow optimal scaling and those that do not. When

T (n) ∈ O(log n), stability is achieved, as shown before, and limn→∞
Mn

logn
→ 1

almost surely. In this case, it is unknown how the asymptotic scaling is effected.

3.5 Thresholds for a Finite Number of Users

The previous sections have established how fast thresholds can scale as a

function of the number of users in the system so that asymptotically the sum-rate

throughput still maintains the optimal scaling properties. While of theoretical

interest, in any real system the number of users is finite. So how should the

threshold be chosen in this case? The design of an appropriate threshold depends

on the metrics that are to be optimized. This section discusses how to design the

threshold for a system with n users to address the following metrics:
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1. What should the threshold be so that the probability that no user feeds

back information for any transmit beam is less than some design parameter

γoutage?

2. What should the threshold be so that on average only k users feed back SINR

information for every transmit beam?

3. What should the threshold be so that the rate loss compared to the unthresh-

olded system is less than some design parameter Rloss?

The first question is motivated by the fact that for any threshold, as long as

one users feeds back SINR information for each transmit beam, then the maximum

SINR is conveyed at the transmitter. In the event that the threshold is chosen so

that no user feeds back SINR information for a transmit beam, multiuser diversity

is lost on that beam, thus the probability that no user feeds back information

needs to be controlled. The design parameter γoutage is the ”multiuser diversity

outage probability”, which is the maximum proportion of the time that the system

is allowed to have no user feedback CSI information for any transmit direction.

The second question will follow as a simple consequence of the analysis of the

first question and constrains the average number of users feeding back. The final

question is motivated by the fact that feedback is a precious resource, so perhaps

one is willing to sacrifice some throughput to reduce the amount of feedback. As

a function of the amount of throughput that is sacrificed for the reduction in

feedback, an appropriate threshold can be designed. The following subsections

provide solutions to the threshold design questions just raised.

3.5.1 Designing a Threshold under Outage Constraints

The first design criterion corresponds to each transmit beam having fed

back SINR information 1− γoutage percent of the time. The system is in multiuser

diversity outage if at least one transmit beam has no feedback information, and this

situation should occur less than γoutage percent of the time. The key to the analysis

of designing a threshold to meet this requirement is to recall from Equation 3.10

the effect thresholding has on the underlying distribution function. Two feedback
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schemes will be considered. The first feedback scheme has each user feed back their

observed SINR value for each transmit direction. The second feedback scheme

has each user feed back only the largest observed SINR value over all transmit

directions, and the index of the transmit beam that generated the maximum.

SINR Information for each Transmit Direction

First, consider the feedback scheme where information is fed back for each

transmit beam and N = 1, i.e. the number of receive antennas per user is one.

Since the SINR is always positive, if 0 ≤ SINR < xthreshold, then the user does

not feed back the SINR information for that particular transmit beam, and this

happens with probability FSINR(xthreshold). For a system with n users and M

transmit beams, let Yi,j, i ∈ {1, . . . , n}, j ∈ {1, . . . ,M} be a Bernoulli random

variable indicating that user i feeds back SINR information for transmit beam j.

From the previous statement, Yi,j are i.i.d. with the following distribution:

Pr [Yi,j = 1] = 1− Pr [Yi,j = 0] = 1− FSINR (xthreshold) . (3.13)

Define the random variable Zj = Y1,j + · · · + Yn,j, which denotes the total

number of users that feedback information for transmit beam j. Since the Yi,j are

i.i.d. for all i, Zj is a binomial random variable, i.e.

Zj ∼ B (n, 1− FSINR (xthreshold)) .

Outage occurs for transmit beam j when Zj = 0, and Pr [Zj = 0] = (1 − (1 −
FSINR(xthreshold)))

n = (FSINR(xthreshold))
n and the probability that the system is

in outage is

Pr[outage] = γoutage = 1− Pr[not in outage] = 1− Pr [Z1 6= 0, . . . , ZN 6= 0]

= 1−
M∏
i=1

Pr [Zi 6= 0] = 1−
M∏
i=1

(1− Pr [Zi = 0])

= 1− (1− (FSINR(xthreshold))
n)
M
.

Thus, for a fixed number of users n, a fixed number of transmit antenna M , and
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Figure 3.3: Threshold as a function of γoutage for M = 4 and ρ = 1

design parameter γoutage ∈ [0, 1], the threshold can be determined:

γoutage = 1− (1− (FSINR(xthreshold))
n)
M

⇒ xthreshold = F−1
SINR

((
1− (1− γoutage)

1
M

) 1
n

)
where F−1

SINR is the inverse distribution function. The solution to the inverse dis-

tribution function can be expressed in terms of Lambert functions. An alternative

solution to evaluating the inverse is to use an iterative algorithm. Because the

distribution function is a function of a scalar and monotonic, iterative algorithms

are well suited for the computation of the inverse. Figure 3.3 shows the value of

xthreshold as a function of γoutage for varying numbers of users in the system. As

expected, for γoutage approaching zero, the threshold also has to go to zero, and for

γoutage approaching one, the threshold begins to blow up. For larger numbers of

users in the system, the threshold can be set higher and achieve the same outage

probability due to the increased maximum order statistics.

If the receivers are allowed to have N ≥ 1 number of receive antenna, as

mentioned in Section 3.3.2, there are different ways to handle feedback. Originally

in [SH05], one can consider each receive antenna as an independent user. In this

case, the previous analysis follows verbatim except substituting n with nN since

the system effectively has nN users under this methodology. Another approach

considered in [PR10a] is to have each user perform LMMSE reception, and then
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Figure 3.4: Example of Maximization at the Transmitter under Alternate Feed-
back Scheme

feedback the post-processed SINR for each transmit direction. In this case, the

previous analysis is identical except substituting FSINR with FMMSE from Equation

3.9. In this case, the closed form solution of the inverse distribution function does

not exist, and an iterative approach is required.

SINR Information for only the Best Transmit Direction

An alternative feedback scheme considered in [PR10a] has each user only

feed back the maximum SINR across all transmit beams, as well as the index for

the transmit beam that generated the maximum. Recall from Figure 3.1, this

corresponds to feeding back the largest value in the array. For the time being,

let N = 1. The number of SINR values fed back for a particular transmit beam

is a random variable under this scheme. To help understand this randomness,

consider Figure 3.4 which shows an example for a system with nine users and four

transmit beams. Each user feeds back the largest SINR observed across all transit

beams, so in this example, users 1,4 and 5 report back their SINR values and the

fact that transmit beam 1 generated the maximum. The number of users that

feed back SINR values corresponding to transmit beam 1 is not known a priori

and is thus random. Since each user is restricted to feed back only one SINR

value, and due to the symmetry of the system model, the number of SINR values

for each transmit beam received at the transmitter is multinomially distributed.

Using the traditional balls and bins analogy for the multinomial, the n users are

the n balls, the M transmit beams are the M bins, yielding a probability vector
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p =
[

1
M
, . . . , 1

M

]
∈ RM . The effect of thresholding on this problem is that rather

than each user’s feedback being in a bin associated with a transmit beam, that

value may not actually be there if it did not exceed the threshold. Leveraging the

balls and bins analogy again, each user can be thought of as putting a ball into a

bin, but then there is a chance that the ball may be invisible and not counted due

to the SINR not exceeding the threshold.

Recall the probability mass function of the multinomial of interest is

Pr [Y1 = y1, . . . , YM = ym] =

{
n!

y1!···yM !

(
1
M

)y1 · · · ( 1
M

)yM when
∑M

i Yi = n

0 otherwise

(3.14)

where Yi are the number of users who sent back information for the ith transmit

beam. For any given realization of the multinomial, the probability of an outage

event occuring is of interest. Let Xi, drawn from FSINR(M)
(as given by Equation

3.8), be the value that is to be fed back by the ith user. In this problem, if

Xi < xthreshold, then the ball is considered invisible. An outage event occurs

when all of the balls in at least one bin are invisible. Suppose, for concreteness,

that four users are to feed back information regarding transmit beam one. Then

there are four balls in bin one, and Y1 = 4. The case where all of the balls are

invisible corresponds to the error event, and this event occurs with probability

1 −
(
FSINR(M)

(xthreshold)
)4

, where the exponent of four came from the fact that

Y1 = 4. This argument can be extended to all the other bins. Thus, conditioned

on knowing the number of balls in each bin yields the following probability:

Pr [not in outage|Y1 = y1, . . . , YM = ym]

=
M∏
i=1

(
1− (FSINR(M)

(xthreshold))
yi
)
. (3.15)

Removing the conditioning produces the total probability of not being in outage

Pr [not in outage]

=
∑

Pr [not in outage|Y1 = y1, . . . , YM = ym] · Pr [Y1 = y1, . . . , YM = ym]

=
∑

Pr [Y1 = y1, . . . , YM = ym] ·
M∏
i=1

(
1− (FSINR(M)

(xthreshold))
yi
)



67

where the summation is taken over all possible configurations of the multinomial.

With the probability of not being in outage calculated, the threshold can be solved

for via the following equation:

1− γoutage =
∑

Pr [Y1 = y1, . . . , YM = ym] ·
M∏
i=1

(
1− (FSINR(M)

(xthreshold))
yi
)
.

(3.16)

The closed form inverse does not exist, so once again iteratve approaches must

be taken. Equation 3.16 thus provides a way of finding the threshold under a

multiuser diversity outage constraint when using a feedback algorithm that only

feeds back local maxima. For the case where N > 1, the extension of the previous

feedback scheme considered in [PR10a] takes the maximum over transmit beams

and antennas to reduce the feedback per use to a single SINR value (and the beam

index). In this case, the prior analysis follows substituting in
(
FSINR(M)

)N
for

FSINR(M)
, which arises due to the additional maximization over receive antennas.

3.5.2 Designing a Threshold Constraining the Average

Number of Users Feeding Back

Because the SINR information is distributed across geographically sepa-

rated receivers, it is impossible to design a threshold that can guarantee that

exactly k < n users feed back information for each transmit beam without further

sharing of information. The best one can hope to do is use the statistical infor-

mation about the channel metric, the observed SINR, to create a threshold that

guarantees on average only k users feed back. First, consider the feedback schemes

from Section 3.5.1 where each user feeds back SINR information for each transmit

direction. Consider the case where N = 1. From Section 3.5.1 it is known that

the probability of feeding back is a Bernoulli random variable, and the number of

users feeding back for a particular transmit beam is a binomial random variable

with parameters n and 1− FSINR (xthreshold). With these observations, the design

of the threshold under the average number of users feeding back per transmit beam

metric is straightforward. Once again, let Zj ∼ B (n, 1− FSINR (xthreshold)) be the
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Figure 3.5: Threshold as a function of the Average Number of Users Feeding
Back for M = 4 and ρ = 1

number of users feeding back for transmit beam j. Then

k = E [# of users feeding back for transmit beamj]

= E[Zj] = n (1− FSINR (xthreshold))

⇒ xthreshold = F−1
SINR

(
n− k
n

)
. (3.17)

Figure 3.5 shows the threshold as a function of the constraint on the average

number of users feeding back for varying number of users in the system. As the

average number of users allowed is increased, the threshold decreases as expected

to accomodate more users exceeding the threshold. When the average number of

users equals the number of users in the system, the threshold is equal to zero.

If one is interested in constraining the average total amount of feedback

to k (rather than on average k values per transmit beam), by the symmetry of

the problem, substitute k with k′ = k
M

in Equation 3.17. This is saying that each

transmit direction gets on average k
M

values, so for all M transmit beams, the total

on average is k. These thresholds extend to the case when N > 1 in two ways. If

one considers feeding back the maximum observed SINR over the receive antennas

for each transmit direction, then the previous analysis holds substituting FSINR(x)

with (FSINR(x))N . If one allows for LMMSE reception, the previous results hold

by using the distribution function given in Equation 3.9.
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As in Section 3.5.1, consider the feedback scheme where only the local

maximum SINR over the transmit beams is fed back. Recall that FSINR(M)
denotes

the distribution function of the SINR values fed back under this scheme. The

analysis in this case is similar to the previous case, but now one must consider

that the transmit beam whose SINR value is being fed back is a random variable

that is uniform over the transmit beams, i.e. every transmit direction is equally

likely to produce the local maximum SINR. From Figure 3.1, this corresponds to

the fact that when finding the maximum value in the array, it is equally likely to

occur in any given column. Let Z ′j be the number of values fed back for transmit

beam j. Then Z ′j ∼ B
(
n, 1−FSINR(xthreshold)

M

)
, where the factor of 1

M
comes from

the previously mentioned fact that associated transmit beam is a uniform random

variable over the M transmit beams. The threshold design is given by

k = E [# of users feeding back for transmit beam]

= E[Z ′j] = n

(
1− FSINR(M)

(xthreshold)

M

)
⇒ xthreshold = F−1

SINR(M)

(
1− kM

n

)
. (3.18)

Notice that in this case it is required that k ≤ n
M

. This constraint makes sense

under this feedback scheme since without thresholding, on average there will be

n
M

values fed back per transmit beam. These results can be extended to the case

where N > 1 and the maximum SINR is taken over transmit directions and receive

antennas in a straight forward manner. Substituting
(
FSINR(M)

)N
for FSINR(M)

produces xthreshold = F−1
SINR(M)

(
1− kM

n

) 1
N .

3.5.3 Designing a Threshold with Rate Loss Constraints

A third design constraint of interest is to select a threshold that bounds

the rate lost in the system as compared to the system without a threshold. Let R

be the throughput of the unthresholded system and consider the feedback scheme

where N = 1 and the SINR is fed back for each transmit direction as in Section

3.5.1. From [PR10a], it is known for this scheme that R can be expressed as

R ≈M

∫ ∞
0

1

1 + x
(1− (FSINR(x))n) dx, (3.19)
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where the approximation symbol becomes very accurate for a moderate number

of users in the system. Equation 3.19 is equivalent to writing out the integral

equation to evaluate

ME [log (1 + max {X1, . . . , Xn})], where the Xi are drawn i.i.d. from FSINR. The

exponent of n on the distribution function is the effect of the maximum order

statistics. The sum-rate throughput of the thresholded system is more complicated.

The thresholded distribution given in Equation 3.10 cannot be directly plugged

into the above Equation 3.19. This is because the thresholded distribution defined

maps the rate to xl = 0 when the SINR does not exceed the threshold. This

mapping works when analyzing the question of optimal sum-rate scaling because

the primary concern is whether multiuser diversity is achieved or not. With a

finite number of users, even if no user exceeds the threshold and thus there is

no feedback, this does not mean the system achieves zero throughput. If no user

feeds back for a particular direction, the scheduler can randomly select a user and

transmit to it. This random selection does not benefit from multiuser diversity

since there is no CSI, but it can achieve a non-zero throughput.

The thresholded sum-rate throughput consists of two parts: the rate when a

transmit direction receives CSI and the rate when no user feeds back information

for a transmit direction and thus a random user is scheduled on that direction.

Let Fthreshold be the distribution of the SINR for a transmit direction under the

scheme where it schedules the maximum user if at least one user feeds back SINR

information, and schedules a random user if no CSI is fed back. Thus, as with

Equation 3.10, when at least one user feeds back CSI information for a transmit

direction, the true maximum is observed and the thresholded distribution is given

by

Fthreshold(x) = F n
SINR for x ∈ [xthreshold,∞). (3.20)

Now consider the situation when no CSI is fed back. Conditioned on the fact

that no SINR value exceeds the threshold,when the scheduling algorithm selects

a user at random to transmit to, from [Dav70] the conditional distribution of the

SINR of the randomly selected user is given by

Frandom(x) =
FSINR(x)

FSINR(xthreshold)
for x ∈ [0, xthreshold). (3.21)
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Figure 3.6: Thresholded Distribution Function for the Exponential Distribution
with n = 10 and xthreshold = 3.5

The distribution is defined on [0, xthreshold) since this distribution occurs when no

users exceeds the threshold. The denominator in Equation 3.21 renormalizes the

distribution FSINR so that Frandom is a true distribution function. The probabil-

ity that no user exceeds the threshold is given once again by FSINR(xthreshold)
n.

Putting together these facts with Equation 3.20 produces the total distribution

function for this thresholded scheme:

Fthreshold =

{
FSINR(x)n for x ∈ [xthreshold,∞)

FSINR(xthreshold)
n · Frandom(x) for x ∈ [0, xthreshold)

(3.22)

Figure 3.6 verifies this equation with the exponential distribution for n = 10 and

xthreshold = 3.5. Substituting the distribution in Equation 3.22 for FSINR(x)n in

Equation 3.19 provides the sum-rate throughput of this scheme Rthreshold:

Rthreshold ≈M

∫ ∞
0

1

1 + x
(1− Fthreshold(x)) dx, (3.23)

where the integral can be multiplied by M since all the transmit beams statistics

are independent and identically distributed.

Define the throughput of the system when random users are selected on

each transmit beam as Rrandom. Then from Equation 3.19, Rrandom is given by

Rrandom ≈M

∫ ∞
0

1

1 + x
(1− FSINR(x)) dx. (3.24)
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Figure 3.7: Threshold as a function of Rloss for M = 4 and ρ = 1

Let Rloss = R−Rthreshold ∈ [0, Rrandom] be the design parameter that quantifies the

amount of rate that can be sacrificed in order to reduce feedback. The upper bound

on Rloss is Rrandom since in the worse case scenario this throughput can be achieved.

Since FSINR for this system is continuous and monotonically increasing, Rloss is

monotonic increasing as a function of xthreshold and there exists one solution for

xthreshold that solves the above equation for Rloss. Rloss is a complicated function

of xthreshold, but due to its monotonicity, an iterative algorithm can be used to

find xthreshold to sufficient accuracy. Figure 3.7 shows the threshold as a function

of the design parameter Rloss. For small values of Rloss, the larger the number

of users, the higher the threshold can be set and still achieve the same rate loss,

which is expected since for a larger number of users, the probability of exceeding

the threshold increases. All the thresholds eventually approach infinity as Rloss

approaches the unthresholded sum-rate throughput given by Equation 3.19.

Adapting the preceeding arguments for the feedback schemes considered in

Section 3.5.1 when N > 1 is straightforward. For the case where each antenna

is considered an individual user, change the exponent of FSINR in Equation 3.22

from n to nN . When LMMSE receivers are implemented, substitute FMMSE in

Equations 3.21 and 3.22. The more difficult scheme to analyze is when only the

local maximum SINR values and the associated beam index are fed back as in

Section 3.5.1. Recall the multinomial distribution given by Equation 3.14. Define
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Y ′i to be the number of users that feed back CSI for the ith transmit beam and

exceed the threshold. Thus, Y ′i is equal to Yi minus the the number of values

that would have been fed back but did not exceed the threshold. The difficulty in

analyzing the rate of this scheme from a theoretical perspective is two-fold. First,∑
Y ′i ≤ n since some values may not exceed the threshold, and hence the Y ′i do

not form a multinomial. This is a problem since the exponent of the distribution is

no longer known. For example, consider a system with n = 20 users, and suppose∑
Y ′i = 15 and for concreteness Y1 = 5. When theoretically analyzing the rate, the

exponent for the first transmit beam could have been the maximum of five values

that were fed back, or it could have been a maximum of up to 10 values ( Y1 +

n−
∑
Y ′i ), since there is no information available on five of the users. The second

problem is that if no information is available for a specific transmit direction, then

a random user is scheduled. Suppose that the user randomly selected fed back

CSI information, but for a different transmit direction. For example, suppose

N = 1 and the SINR values at the randomly selected user are 1 and 2 for transmit

directions 1 and 2 respectively. If the threshold was xthreshold = 0.5, both exceed the

threshold, but since only the local maximum is fed back, the value of 2 on the first

transmit direction is never observed. Thus, when this user is randomly selected

for the first transmit direction, the SINR value is greater than the threshold, but

is conditionally known to be less than 3 since the that value is known at the

scheduler. Therefore the distribution of the randomly selected users’ SINRs is

quite complicated. For these reasons, the analysis will not be performed on this

scheme. Simulations can be used to design an appropriate threshold.

3.6 Conclusion

This chapter addresses the question of which user should feed back the

observed SINR given statistical knowledge of the channel metric. When every

receiver feeds back their SINR information, it is shown in [SH05] that random

beamforming achieves the optimal sum-rate throughput scaling. In [PR10a], it

is shown that any finite threshold such that users experiencing SINRs below this
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threshold do not feed back does not affect this optimal scaling rate. The questions

raised in this chapter discuss how the thresholds can be designed as a function of

the number of users in the system to achieve certain performance metrics.

The first performance metric considered is how fast can the threshold grow

yet still exhibit the optimal scaling. It is shown that any thresholding function

T (n) as a function of the number of users n that grows slower than log n, i.e.

T (n) ∈ o(log n), achieves the optimal scaling rate. Conversely, any thresholding

function T (n) ∈ ω(log n) causes the system to lose all multiuser diversity.

The second part of the chapter considers how to optimally design thresholds

for systems with a finite number of users. Using the statistics of the channel metric,

thresholds for an n user system under three different design criterion are found.

Under the first criterion, a threshold is designed to limit the probability that no

user in the system feeds back CSI information for any transmit beam to be less than

the design parameter γoutage. The second criterion considers choosing a threshold

such that on average only k out of n users in the system feed back CSI information

for each transmit beam. Finally, a threshold is designed to limit the rate lost

compared to a random scheduling algorithm to be below a design parameter Rloss.

The material in this chapter is work which in preparation for submission to

the IEEE Transactions on Signal Processing under the title “Reducing Feedback in

Broadcast Channels via Thresholding” and material submitted to Asilomar Confer-

ence on Signals, Systems, and Computers 2011 under the title “Feedback Reduction

by Thresholding in Multi-User Broadcast Channels: Design and Limits”. Both of

these works are coauthored with Professor Bhaskar D. Rao.



Chapter 4

Greedy Scheduling and

Proportional Fair Sharing Under

i.i.d. Models

4.1 Outline

There exists a trade-off between performance and fairness in scheduling al-

gorithms. A greedy scheduling algorithm will schedule the user with the best rate

during each epoch to maximize the throughput of the system at the expense of

neglecting fairness considerations. In an attempt to balance fairness and perfor-

mance the proportional fair sharing (PFS) algorithm has been proposed. In this

chapter, it is shown that when the rates of each user are i.i.d., the asymptotic

performance of the greedy and PFS scheduling algorithms are equivalent. Under

the i.i.d. model, the mean asymptotic throughput of the PFS algorithm is char-

acterized and the rate of convergence to this throughput is derived. Additionally,

the asymptotic distribution of the distance of the PFS algorithm from the asymp-

totic throughput is found. Because the rates of each user must be fed back to the

base station to make the scheduling decision, a thresholding mechanism is consid-

ered to reduce the amount of feedback overhead in the system. The effects of the

thresholding mechanisms on the PFS algorithm and the asymptotic performance

75
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is shown. This chapter contains material in preparation for submission to IEEE

Transactions on Information Theory under the title “Greedy Scheduling and Pro-

portional Fair Sharing Under i.i.d. Models” coauthored by Professor Bhaskar D.

Rao.

4.2 Introduction

Scheduling users in a cellular downlink channel is an important question

whose solutions balance system throughput and fairness. Suppose there are n

users in a given cell and the base station has M transmit antennas and n > M . In

this case, at most a subset of M of the n users can be scheduled for simultaneous

transmission by the base station if all the users are to receive independent signals.

The central question addressed by any scheduling algorithm is how to select the

k ≤M users to transmit to during any given scheduling epoch.

The scheduling algorithm can often be intimately related to the transmis-

sion scheme. For example in the semi-orthogonal user selection (SUS) algorithm

proposed in [YG06b], the transmission scheme and scheduling algorithm are one

in the same. In the SUS algorithms, the first iteration identifies the user with the

best channel conditions and the corresponding transmit direction. In subsequent

iterations of the algorithm, the users with the best channel conditions and transmit

directions that are nearly orthogonal to the previously selected users are chosen.

The data for each selected user is transmitted along their beamforming directions,

which by construction are nearly orthogonal. Thus, the SUS algorithm simultane-

ously considers the transmission and scheduling procedure. Another transmission

protocol is the random beamforming scheme considered in [SH05]. This scheme

has the base station generate a random M -dimension complex orthonormal basis

to use as the transmit beamformers. Each user measures the SINR along the basis

vectors and feeds back these measurements to the base station. At this point, a

greedy scheduling algorithm is used that schedules the user with the largest SINR

on each transmit basis vector.

These algorithms attempt to maximize the sum-rate throughput of the
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downlink. As such, fairness considers are not explicitly considered. For exam-

ple, in the the random beamforming scheme, a particular user may experience an

arbitrarily long wait time. The Rayleigh fading model assumed in [SH05] however

guarantees that asymptotically each user will be scheduled an equal proportion

of time. An alternative to greedy scheduling is the round robin scheduler which

deterministically schedules a user once every n scheduling epochs. The round

robin method guarantees fairness, but the system performance is degraded. Any

scheduling algorithm that is agnostic to the channel conditions of the users cannot

exploit multi-user diversity. Therefore there is a fundamental trade-off between

fairness and performance. The random beamforming method is known to exploit

multi-user diversity and exhibit optimal throughput scaling asymptotically in the

number of users in the broadcast channel where as the round robin method is fair

but the throughput does not scale with the number of users.

Greedy algorithms are very attractive due to their ease of implementation

and good performance but ignores any fairness criterion. The proportional fair

sharing (PFS) algorithm is a scheduling algorithm that tries to balance perfor-

mance and fairness. The PFS algorithm forms a ratio of each user’s current rate

to their average scheduled rate and selects the user with the largest ratio. To

see that this provides some notion of fairness, consider a user that has rarely been

scheduled in the past. Then that user’s average scheduled rate is small, causing the

previously mentioned ratio to become large, and increase the likelihood of being

scheduled.

This chapter shows that when the rates are i.i.d., under suitable conditions

on the distribution, the PFS algorithm performance converges to the performance

of the greedy algorithm in time. In the appropriate state space, the convergence

is equivalent to showing the two algorithms converge to the same stationary limit

point. The rate of convergence of the PFS algorithm to the limit point is charac-

terized as well as the asymptotic normality and covariance of the PFS algorithm

around the limit point. These results imply that the PFS algorithm can be used

to ensure some degree of fairness, and it is known that asymptotically the same

performance as the greedy algorithm will be attained. These results are shown by
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leveraging the theory of stochastic approximations, as is done in the motivating

work [KW04].

Because the PFS algorithm is a function of the current rate of each user,

each user must provide channel state information (CSI) feedback to the base station

in order to make the scheduling decision. In this chapter it is assumed that the

rate information itself is fed back to the base station, and thus schemes where the

transmit and scheduling algorithms are decoupled, as in random beamforming, are

considered. Motivated by our previous work [PR10b], CSI feedback reduction can

be achieved by comparing a function of each user’s rate to a threshold, and if the

threshold is exceeded the user feeds back its rate information, otherwise the user

provides no feedback. CSI reduction is of interest since transmit power can be

saved as well as relieving congestion on the radio resource. A thresholding scheme

is considered under the PFS scheduling algorithm and is shown to converge to a

stationary limit point which is analytically characterized.

The organization of the chapter is as follows: the proportional fair shar-

ing algorithm is described in detail in Section 4.3. The convergence of the PFS

algorithm to the greedy algorithm when the rates are bounded is considered in

Section 4.4 and the convergence results are extended to the case where the rates

are unbounded in Section 4.5. The rate of convergence to the fixed stationary

point as well as asymptotic covariance structure around the fixed point are shown

in 4.6. Section 4.7 analyzes the effects of a thresholding mechanism applied to the

rate information feedback on the fixed point of the PFS algorithm. Section 4.9

summarizes the results and concludes the chapter.

4.3 The Proportional Fair Sharing Algorithm

The general proportional fair sharing problem formulation will follow the

set-up established in [KW04]. The results of [KW04] show that under general

conditions the PFS algorithm converges, but does not address where it converges

to due to the generality of the conditions. The primary goal of this chapter is

to show that under an i.i.d. model, the convergence is to the performance of the
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greedy algorithm.

Let there be N users in the system and let Xi,n be the instantaneous rate

of user i at time slot n. The Xi,n are assumed to be i.i.d. continuous, non-negative

random variables, since the rates cannot be negative, for all 1 ≤ i ≤ N and n ∈ N+.

At time n + 1, let the rates Xi,n+1 be known at the scheduler for all i. Then the

indicator random variable Ii,n+1 denotes the event that user i is scheduled for time

slot n + 1. The average throughput of the ith user after n time slots is θi,n and is

defined as follows:

θi,n =
n∑
l=1

Xi,lIi,l
n

. (4.1)

Because Ii,l = 1 only when user i is scheduled for time slot l, the sum in Equation

4.1 is the average scheduled rate for user i. Since the rates Xi,n+1 are known at

the scheduler at time n + 1, the PFS algorithm selects the user with the largest

ratio
Xi,n+1

θi,n
, or formally the algorithm performs the following function

arg max
1≤i≤N

{
Xi,n+1

θi,n

}
. (4.2)

When the PFS algorithm starts, all the initial average rates θi,n are zero, and the

ratio in Equation 4.2 is undefined. This was observed in [KW04] and a solution

is to modify the ratio slightly. Let di be positive constants for 1 ≤ i ≤ N , which

can be arbitrarily small. Define the modified PFS algorithm as performing the

following function:

arg max
1≤i≤N

{
Xi,n+1

di + θi,n

}
. (4.3)

The ratio defined in Equation 4.3 is always well defined since the rates are non-

negative. In this chapter it is assumed that di = d for all i and that d is incredibly

small, and is considered only to be needed so that the ratio is well defined during

the initial phases of the algorithm. That is until every user is scheduled at least

once so that average throughput term is non-zero for every user. Because the rates

Xi,n are assumed to be continuous, the probability of there being a tie in either

Equation 4.2 or 4.3 is zero.

Having established the PFS algorithm, the next sections will address the

convergence under the i.i.d. model to the greedy algorithm. The greedy algorithm
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selects the user with the largest instantaneous throughput at every time slot n, i.e.

the schedule function for time slot n+ 1 is given by

arg max
1≤i≤N

{Xi,n+1} (4.4)

The approach to prove the convergence is based on the ordinary differential equa-

tion (ODE) method of stochastic approximation (SA) as found in [KY03]. First,

the convergence is shown when the rate random variables Xi,n are bounded and

then the results will be extended to rates which are unbounded from above.

The extension to unbounded random variables is motivated by the Trajectory-

Subsequence (TS) approach to the SA problem found in [Che02].

4.4 Convergence with Bounded Rates

This section is comprised of two parts. The first section discusses how

the PFS algorithm can be put into the framework of a stochastic approximation

algorithm. Much work has been done to characterize convergence properties of

stochastic approximation algorithms and the key points of the ordinary differ-

ential equation method of approaching stochastic approximation algorithms are

discussed. With the appropriate machinery described, the second part of this sec-

tion discusses the convergence of the PFS algorithm to the performance of the

greedy algorithm asymptotically in time.

4.4.1 The Stochastic Approximation Approach

In Sections 4.4.1 and 4.4.2 the non-negative i.i.d. rate random variables Xi,n

are assumed to be bounded from above, i.e. there exists some constant K such

that Pr(Xi,n > K) = 0 for all i and n. The key to showing the convergence result

is to put the PFS algorithm into the framework of a stochastic approximation

algorithm, and leverage the theory of SA algorithms. The general form of the SA

algorithm as defined in [FP96] will now be stated. Let (ωn)n≥1, (ηn)n≥1 be two

sequences of Rp- and Rd- valued vectors respectively and let H : Rd × Rp 7→ Rd.
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Define the sequence (θn)n≥1 by the recursive algorithm{
θ0 ∈ Rd

θn+1 = θn + εn+1H (θn, ωn+1) + εn+1η
n+1, n ∈ N+,

(4.5)

where (εn)n≥1 is a sequence of positive real numbers called the gain of the algorithm

and ηn is a small residual perturbation.

Having established the general form of the SA algorithm, the PFS algorithm

can be put into this framework. Let θn = [θ1,n, . . . , θN,n]T ∈ RN be the vector of

average throughputs, where it is understood that superscripts are time indices for

vector quantities and subscripts indicate elements of a vector at a particular time

index. Likewise, let Xn = [X1,n, . . . , XN,n]T ∈ RN and let In+1(θn, Xn+1) ∈ RN×N

be an N × N matrix of zeros except for diagonal element Iii,n+1 = 1 if user i is

scheduled for time slot n + 1. The indicator function In+1(θn, Xn+1) is explicitly

written as a function of the vector of average throughputs θn up to time n and

current rates Xn+1 since these values determine which component is non-zero by

Equation 4.3. The vector of average throughputs can be written in the recursive

form of Equation 4.5. Let ωn+1 = Xn+1, εn+1 = 1
n+1

, and the perturbation sequence

ηn+1 = 0 for all n. Let it also be assumed that the initial average throughputs are

zero for every user, i.e. θ0 = 0 ∈ Rd.Then the following equation gives the desired

recursive relationship:

θn+1 = θn + εn+1H
(
θn, Xn+1

)
= θn + εn+1

[
In+1(θn, Xn+1)Xn+1 − θn

]
= θn + εn+1Y

n, (4.6)

where H (θn, Xn+1) = [In+1(θn, Xn+1)Xn+1 − θn] = Y n. Equation 4.6 is estab-

lished in [KW04].

The ODE Method for solving SA algorithms attempts to show that the

random SA algorithm generally behaves like a dynamical system, and that asymp-

totically the SA algorithm converges to a stationary point or stationary set of a set

of differential equations. Before putting the SA algorithm of Equation 4.6 into a

form suitable for the ODE method, some definitions are required. Let h be called

the mean function, and in the i.i.d. setting, as mentioned in [FP96], it can be
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defined as:

h(θ) ,
∫
H(θ, x)µ(dx) (4.7)

where X ∈ RN have common distribution µ, θ ∈ RN and H(θ, ·) is µ-integrable for

every θ ∈ RN . The interpretation of the mean function is given that the current

location in the θ-space is θ, on average one will move in the direction h(θ). Let

(Fn)n≥0 be the filtration generated by θ0 and (Xn)n≥1. Then letting the random

vector of the current average throughputs θn be the argument of the mean function

produces

h(θn) = E
(
H(θn, Xn+1)|Fn

)
. (4.8)

The right hand side of Equation 4.8 says where the algorithm is going to move

on average in the next time step given the past (the information contained in the

filtration Fn). Lastly, define a martingale difference sequence (MDS) as follows:

Definition 3. Let (Xn)n≥0 and (Y n)n≥1 be two Rd-valued random sequences and

let (Fn)n≥1 be the filtration generated by (Xn)n≥1. The sequence (Y n)n≥1 is called

a martingale difference sequence if

E(Y n+1|Fn) = 0 for all n ∈ N.

Having established the preceding definitions, Equation 4.6 can be written

in the following form suitable for analysis by the ODE method:

θn+1 = θn + εn+1h(θn) + εn+1

(
In+1(θn, Xn+1)Xn+1 − θn − h(θn)

)
(4.9)

= θn + εn+1h(θn) + εn+1δM
n+1 (4.10)

where h(θn) is the mean function and δMn+1 is a MDS. To see that δMn+1 is a

MDS follows from the definition of the H, mean function h and using the filtration

(Fn)n≥0 generated by θ0 and (Xn)n≥1:

E
(
δMn+1|Fn

)
= E

(
In+1(θn, Xn+1)Xn+1 − θn − h(θn)|Fn

)
= E

(
In+1(θn, Xn+1)Xn+1 − θn − E

(
H(θn, Xn+1)|Fn

)
|Fn
)

= E
(
In+1(θn, Xn+1)Xn+1 − θn − E

(
In+1(θn, Xn+1)Xn+1 − θn|Fn

)
|Fn
)

= E
(
In+1(θn, Xn+1)Xn+1 − θn|Fn

)
− E

(
In+1(θn, Xn+1)Xn+1 − θn|Fn

)
= 0 for all n ∈ N.
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The fact that Equation 4.6 could be written in the form of the sum of

a mean function and a MDS is not surprising. As pointed out in Chapter 5 of

[KY03], this form naturally arises when Y n can be written in the form H(θn, Xn)

and the Xn are mutually independent, as is the case here. If the conditions of the

celebrated Kushner-Clark Theorem ([KY03, FP96]) can be verified, the result of

the theorem says that almost surely the limit of sample paths θn are trajectories

of the differential equation

θ̇ = h(θ) (4.11)

The key implication of the Kushner-Clark Theorem is that the SA algorithm can

asymptotically be analyzed using the theory of differential equations and dynamical

systems. The distribution of the (θn)n≥1 is not known in closed form, but it

is still possible to analyze its performance due to the Kushner-Clark Theorem.

Additionally, if it can be shown that there is a unique singleton {θ∗} such that

regardless of the initial condition θ0, the solution to Equation 4.11 is θ∗, then

the Kushner-Clark Theorem also says that (θn)n≥1 converges almost surely to θ∗

regardless of the initial condition. From [Ben96], let Φ(t, x) = Φt(x) be the flow

induced by Equation 4.11. A point θ is an equilibrium point if Φt(θ) = θ for all

t ∈ R. Another way of stating the second conclusion is that if θ∗ is the unique

global attractor, i.e. limt→∞Φt(θ
0) = θ∗ regardless of the initial condition, then

the SA algorithm almost surely converges to θ∗.

4.4.2 Convergence of the PFS Algorithm with Bounded

Rates

The goal of this section is to show that under bounded non-negative i.i.d.

random variables the PFS algorithm converges to greedy algorithm. This result

will be shown via the following steps. First, the conditions of the Kushner-Clark

Theorem will be shown to hold so the solution of the SA algorithm converges to

a solution of the differential equation given in Equation 4.11. Next, a theorem

in [KW04] will be stated showing that there exist a unique global attractor, and

thus the SA algorithm converges almost surely to θ∗. Lastly, it will be shown that
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θ∗ corresponds to the solution of the greedy algorithm, so the two algorithms are

asymptotically equivalent. It should be pointed out that under the i.i.d. model

which yields Equation 4.9, almost sure convergence results are attainable, as op-

posed to the weak convergence results found in [KW04] which consider more general

random sequences (Xn)n≥1.

The first task is to show that the conditions required of the Kushner-Clark

Theorem are satisfied. There are six conditions that must be satisfied and they

are listed as follows ([KY03])

1.
∑∞

n=0 εn =∞, εn ≥ 0, εn → 0 for n ≥ 0.

2. supn En|Yn|2 <∞.

3. There is a measurable function g(·) of θ and random variables βn such that

EnYn = E [Yn|θ0, Yi, i < n] = g(θn) + βn.

4. g(·) is continuous.

5.
∑

i ε
2
i <∞.

6.
∑

i εi|βi| <∞ w.p.1.

Conditions 1 and 5 are immediate since εn+1 = 1
n+1

and Condition 3 holds with

g = h, the mean function defined in Equation 4.7. From the mean function, notice

that βn = 0 for all n, so Condition 6 is trivially true. Condition 2 is true since the

sequence of random variables (Xn)n≥1 are bounded. The last condition to check

is that the function g = h is continuous. In [KW04], it is shown that g is in fact

Lipschitz continuous, a condition stronger than continuity, as a consequence of

(Xn)n≥1 being bounded. Therefore, the Kushner-Clark Theorem can be applied

to the SA algorithm and the solution converges to a trajectory of the ODE given

in Equation 4.11.

The existence of a unique global attractor θ∗ for Equation 4.11 is given by

Theorem 2.2 in [KW04]. The proof of the theorem is based on dynamical systems

theory, more specifically the monotonicity property of the solution to Equation
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4.11. An overview of monotone dynamical systems can be found in [Smi95]. Ap-

plications of monotone dynamical systems theory in a stochastic approximation

setting can be found in [BH99a, BH99b]. Combining the result of the Kushner-

Clark Theorem with Theorem 2.2 in [KW04] says that the PFS algorithm converges

to a unique equilibrium point θ∗ regardless of the initial condition θ0 almost surely.

Since it is known that the PFS algorithm converges to a unique θ∗ almost

surely, the last step is to show that θ∗ corresponds to the average throughput given

by the greedy algorithm. First, the average throughput of the greedy algorithm

under the i.i.d. model is established in the following lemma:

Lemma 3. Let X1,n, . . . , XN,n be i.i.d. non-negative bounded random variables for

all n ∈ N+. Define MN,n = max {X1,n, . . . , XN,n}, the maximum order statistic at

time n and let θ̃i,n be the average throughput of user i at time n under the greedy

scheduling algorithm given by Equation 4.4. Then the average throughput of the

greedy algorithm θ̃i,n converges to θ̃∗i = E[MN ]
N

almost surely for all i ∈ {1, . . . , N}
and MN does not depend on time.

Proof. Let Ĩi,n be the indicator random variable for the event that user i was

scheduled at time slot n under the greedy algorithm. By Equation 4.4, Ĩi,n(Xn) = 1

if and only if max {X1,n, . . . , XN,n} = Xi,n, and Ĩi,n(Xn) = 0 otherwise. Because

the algorithm is greedy, Ĩi,n(Xn) is only a function of the current rates Xn, and

for simplicity the the explicit functional dependence will be dropped from the

notation. Due to the i.i.d. Xi,ns, from [Dav70] it is known that Pr(Xi,n = 1) = 1
N

for all i and all n. The average throughput of user i at time n can be written

θ̃i,n =
1

n

n∑
j=1

Ĩi,jXi,j. (4.12)

The expectation of Ĩi,jXi,j is given by

E[Ĩi,jXi,j] = E[Xi,j|Ĩi,j = 1] · Pr(Ĩi,j = 1) =
E[MN,n]

N
. (4.13)

By the underlying i.i.d. assumption, E[MN,n] does not depend on the time index

n, so it will be dropped. Let Zi,n = Ĩi,jXi,j, then Equation 4.12 can be rewritten
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as θ̃i,n = 1
n

∑n
j=1 Zi,j, and the Zi,j are i.i.d. for each i. By the boundedness and

non-negativity of the Xi,n

E[|Zi,n|] = E[Zi,n] =
E[MN ]

N
<∞,

so the Strong Law of Large Numbers (SLLN) can be applied and yields

θ̃i,n → θ̃∗i =
E[MN ]

N
a.s. as n→∞ for all i ∈ {1, . . . , N}. (4.14)

Having established the previous results, the convergence of the PFS algo-

rithm to the greedy algorithm is proven in the following theorem:

Theorem 11. Let X1,n, . . . , XN,n be i.i.d. non-negative bounded random variables

for all n ∈ N+. The PFS algorithm given by Equation 4.3 converges to the same

average throughput point θ̃∗ as the greedy scheduling algorithm given by Equation

4.4. Therefore the asymptotic performance of the two algorithms under i.i.d. rates

is identical.

Proof. Due to the Kushner-Clark Theorem and Theorem 2.2 from [KW04], the

PFS algorithm converges to a unique point θ∗. This solution θ∗ is the unique zero

of the mean function h. Lemma 3 states that the greedy algorithm under i.i.d.

rates converges to the average throughput point θ̃∗ = E[MN ]
N
· 1N ∈ RN , where 1N

is the N-dimensional vector of all ones. The last step to show convergence of the

PFS algorithm to the greedy algorithm is to show that the convergence point of

the greedy algorithm θ̃∗ is a zero of the mean function h:

h
(
θ̃∗
)

=

∫
H
(
θ̃∗, x

)
µ(dx) (4.15)

=

∫ [
I
(
θ̃∗, x

)
x− θ̃∗

]
µ(dx) (4.16)

= EX
[
I
(
θ̃∗, X

)
X
]
− θ̃∗ (4.17)

=
E[MN ]

N
· 1N − θ̃∗ (4.18)

= 0. (4.19)
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Equation 4.15 is the definition of the mean function given in Equation 4.7 with

the point θ̃∗ as the argument and the distribution µ is for the random variable

X ∈ RN . Equation 4.16 plugs in the definition of H(θ,X) and since θ̃∗ is non-

random, Equation 4.17 follows. The key step of the proof is going from Equation

4.17 to Equation 4.18. Notice that when the θ vector has equal components, the

PFS function given in Equation 4.3 is equivalent to the greedy function in Equation

4.4, i.e.

arg max
1≤i≤N

{
Xi,n+1

di + θi,n

}
= arg max

1≤i≤N
{Xi,n+1} (4.20)

when θ = c · 1N for some positive constant c. For θ̃∗, c = E[MN ]
N

, so

EX
[
I
(
θ̃∗, X

)
X
]

=
E[MN ]

N
= θ̃∗,

the convergence point of the greedy algorithm. Therefore, θ̃∗ is a zero of the mean

function h, completing the proof.

An interpretation of the mean function h is as a potential field induced by

the PFS algorithm. If one component of the current average throughput vector θn is

large, then the PFS algorithm will select the large component at the next time slot

with decreased probability due to the larger denominator in Equation 4.3. Thus,

viewed as a potential field, the potential is trying to push the average throughput

vector θn back to an equilibrium point, the zeros of h. The monotonicity properties

of the PFS algorithm guarantee that there is one unique equilibrium point, which

corresponds to the average throughput vector that the greedy algorithm converges

to. Figure 4.1 shows the sample paths of the PFS algorithm and the greedy

algorithm on the same set of realized i.i.d. uniform random variables. For the

two-dimensional uniform case, the mean of the maximum order statistic is 2/3, so

the equilibrium point is [1/3, 1/3]T . As is expected by the preceding theory, both

the PFS and greedy algorithms converge to the equilibrium point.

4.5 Convergence with Unbounded Rates

In the previous section, the rate random variables Xi,n were assumed to

be bounded, but in some applications these random variables may be unbounded
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from above. For example, in [SH05], the scheduling decision is based on the SINR

random variables which are supported on the non-negative real line. Unbounded

random variables pose problems for the SA algorithm because at any iteration,

the algorithm may move an arbitrarily large distance and prevent convergence. In

this section, conditions on the unbounded Xi,n are found such the SA algorithm

converges to the greedy algorithm.

The possible unboundedness of the state variable θ is often too troublesome

to deal with, so in the SA literature, the state variable is constrained to be in some

bounded set of the state space. For example, in [KY03], a constraint set H =

{θ : ai ≤ θi ≤ bi} is defined, where [ai, bi] are the constraints on each individual

component of θ. At each iteration, the state space is projected back onto the

constraint set, so that θ can never leave this set, i.e.

θn+1 = ΠH [θn + εn+1Y
n] (4.21)

where ΠH is the projection operator onto the constraint set. As in [KY03], Equa-

tion 4.21 can be written as

θn+1 = θn + εn+1Y
n + εn+1Z

n (4.22)

where Zn ∈ RN is the projection term and εn+1Z
n = θn+1 − θn − εn+1Y

n is the

shortest vector in Euclidean distance required to get θn + εn+1Y
n back into the
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constraint set H. Another approach to constraining the state variable is taken in

[Che02], and the approach is as follows:

θn+1 = I[‖θn+εn+1Y n‖<b] (θn + εn+1Y
n) + I[‖θn+εn+1Y n‖≥b]θ

† (4.23)

where θ† ∈ RN is a fixed point. Here I[·] ∈ RN×N is an indicator matrix of

zeros whose diagonal elements are one when the argument in the subscript is

true, and zero otherwise. Equation 4.23 states that when the norm of the next

iteration θn+εn+1Y
n is less than some positive constant b, update the state θn+1 as

normal, otherwise the state vector gets updated as θn+1 = θ†. Both the methods

of Equation 4.21 and Equation 4.23 prevent the state variable from leaving some

bounded set in RN .

As discussed in [Che02], the weak convergence method of stochastic approx-

imation analysis can handle the unboundedness of the state variable sequence θn

in some cases, but this method guarantees convergence in distribution only. The

convergence in Section 4.4 is almost sure convergence, and if possible, it should

be shown that under certain conditions, the PFS algorithm with unbounded rate

random variables also converges almost surely. A two step approach is taken to

find the conditions on the Xi,n such that the PFS algorithm converges to the

greedy algorithm. The first step is to find necessary and sufficient conditions for

the convergence of the greedy algorithm. If the greedy algorithm fails to converge,

then there is no need to prove the convergence of the PFS algorithm. The second

step is to show that under the necessary and sufficient conditions on Xi,n for the

convergence of the greedy algorithm, the PFS algorithm converges to the greedy

algorithm. The method for proving the second step is motivated by the method of

stochastic approximation algorithms with expanding truncations found in Chapter

2 of [Che02].

The question addressed by the first step is when does the greedy algorithm

converge? Necessary and sufficient conditions on the Xi,n random variables are

found that guarantee the desired convergence. First, the following theorem from

[Dur05] is required:

Theorem 12. (Thm 7.2, Chapter 1, [Dur05])

Let X1, X2, . . . be i.i.d. with EX+
i =∞ and EX−i <∞ where X+

i and X−i are the
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positive and negative parts of the random variables respectively. If Sn = X1 + · · ·+
Xn then Sn/n→∞ almost surely.

Additionally, necessary and sufficient conditions for the existence of the ex-

pectation of the maximum order statistic of interest must be found. This conditions

are provided in the next lemma:

Lemma 4. Let X1, . . . , XN be i.i.d. non-negative random variables and MN =

max {X1, . . . , XN}. Then E[MN ] <∞ if and only if E[Xi] <∞.

Proof. ⇐ From Chapter 3 of [Dav70], it is a well known result in order statistics

that if E[Xi] exists, then the mean of all the order statistics exist, including the

maximum order statistic. Thus if E[Xi] <∞, then E[MN ] <∞.

⇒ To prove that E[MN ] < ∞ implies that E[Xi] < ∞ for all i ∈ {1, . . . , N}
requires the following theorem:

Theorem 13. (Thm 3.1c, Chapter 1, [Dur05])

Suppose X, Y ≥ 0 or E|X|,E|Y | <∞. If X ≥ Y then EX ≥ EY .

All the Xi ≥ 0, and hence MN ≥ 0 as well. By definition Xi ≤ MN , and thus by

Theorem 13, 0 ≤ E[Xi] ≤ E[MN ] <∞, providing the desired result.

The result of Lemma 4 may appear obvious, but in general the existence

of the mean of an order statistic does not imply the existence of the mean of the

underlying random variables. The classical example, as mentioned in Chapter 3 of

[Dav70], is when X1, . . . , XN are i.i.d. Cauchy random variables. Let µr:N be the

mean of the rth order statistic. Then in this case, µr:N exists for 2 ≤ r ≤ N − 1,

but the mean of any Xi does not exist.

Having defined Theorem 12 and Lemma 4, the necessary and sufficient

conditions for the convergence of the greedy algorithm under the i.i.d. model are

now proven.

Theorem 14. Let X1,n, . . . , XN,n be i.i.d. non-negative random variables for all

n ∈ N+, MN,n = max {X1,n, . . . , XN,n} and let θ̃i,n be the average throughput of

user i at time n under the greedy scheduling algorithm given by Equation 4.4.

A necessary and sufficient condition for the convergence of the greedy algorithm
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is that E[Xi,n] < ∞, in which case for each user i ∈ {1, . . . , N} the algorithm

converges to θ̃∗i = E[MN ]
N

<∞.

Proof. By Lemma 4, a necessary and sufficient condition for the existence of

E[MN,n] is that E[Xi,n] < ∞. Thus E[Xi,n] < ∞ is a sufficient condition for

the convergence of the greedy algorithm because the hypotheses of the SLLN hold

and using the same arguments as Lemma 3. Because E[X−i,n] = E[M−
N,n] = 0, if

E[Xi,n] = ∞, then by Lemma 4 E[MN,n] = ∞ and by Theorem 12 the greedy

algorithm would diverge to infinity. Therefore the condition E[Xi,n] <∞ is a nec-

essary condition. When the greedy algorithm converges, by the SLLN it converges

to θ̃∗i = E[MN ]
N

for each user i, so the convergence point is θ̃∗ = E[MN ]
N

1N .

Theorem 14 provides the sought after necessary and sufficient conditions

for convergence of the greedy algorithm. The second step is to show that these

same conditions guarantee the convergence of the PFS algorithm to the same

point θ̃∗ = E[MN ]
N

1N . A method of analysis for the convergence of SA algorithms

with possibly unbounded increments is the method of expanding truncations. The

basic idea is that the bounded set containing the SA algorithm is expanded at

each iteration, and if it can be shown that the SA algorithm leaves these bounded

sets a finite number of times, then the performance of the expanding truncation

method is equivalent to the SA algorithm as if it were unconstrained. The theorems

provided in [Che02] that show convergence of the expanding truncations methods

typically depend on properties of the mean function h. In this case, the mean

function h is not explicitly known in closed form. Because of the similarity of the

PFS algorithm to the SLLN, the proof of the SLLN has provided a method to

prove the convergence of the PFS algorithm with unbounded rates under the same

conditions as Theorem 14 to the greedy algorithm. The following theorem proves

this convergence.

Theorem 15. Let X1,n, . . . , XN,n be i.i.d. non-negative random variables such that

E[Xi,n] < ∞ for all n ∈ N+. The PFS algorithm given by Equation 4.3 converges

to the same average throughput point θ̃∗ = E[MN ]
N

as the greedy scheduling algorithm

given by Equation 4.4 and Theorem 14.
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Proof. Redefine the recursive stochastic approximation algorithm given in Equa-

tion 4.6 as

Θn+1 = Θn + εn+1

[
In+1(Θn, Xn+1)Xn+11[‖In+1(Θn,Xn+1)Xn+1‖≤n+1] −Θn

]
where Θ refers to the average throughput vector under the new definition and

1[‖Xn+1In+1(Θn,Xn+1)‖≤n+1] is the indicator matrix random variable whose diagonal

elements are one when ‖In+1(Θn, Xn+1)Xn+1‖ ≤ n+1 and zero otherwise. Because

only one component of In+1(Θn, Xn+1)Xn+1 is non-zero, ‖In+1(Θn, Xn+1)Xn+1‖ =

Xj,n+1 if user j is scheduled for time slot n+1. By this observation and the Triangle

Inequality

‖Θn+1‖ ≤ 1

n+ 1

n∑
i=0

‖I i+1(Θi, X i+1)X i+11[‖Ii+1(Θi,Xi+1)Xi+1‖≤i+1]‖

≤ 1

n+ 1

n+1∑
i=1

i =
1

n+ 1
· (n+ 1)(n+ 2)

2
=
n+ 2

2
. (4.24)

Therefore, at each iteration, the norm of the state random variable belongs to a

bounded set, although the constraint is not the one used in Equation 4.21 or Equa-

tion 4.23. If it can be shown that the number of terms that are truncated is finite,

then asymptotically the expanding truncations and non-truncated algorithms are

equivalent. From Section 4.4, it is known that the in the bounded case, the PFS

algorithm converges to θ̃∗ = E[MN ]
N

.

The method used to show the number of truncations is finite is motived

by Etemadi’s proof of the SLLN ([Ete81]). Because ‖Xn+1In+1(Θn, Xn+1)‖ ≤
MN,n = max {X1,n+1, . . . , XN,n+1} and MN,n is a non-negative random variable,

the following inequality holds

∞∑
i=1

Pr
(
‖X iI i(Θi−1, X i)‖ > i

)
≤

∞∑
i=1

Pr (MN,i > i)

≤
∫ ∞

0

Pr (MN > t) dt

= EMN <∞ (4.25)

where EMN <∞ since E[Xi,n] <∞ by assumption and Lemma 4. Let An be the

event that ‖XnIn(Θn−1, Xn)‖ > n. Then by the previous set of inequalities, the
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Figure 4.2: Sample Paths of the PFS and Greedy Algorithms for 2 i.i.d. Exp(1)
Rates

First Borel-Cantelli Lemma says that Pr (An infinitely often) = 0. Thus, there are

only a finite number of truncations. Therefore, if E[Xi,n] <∞, the PFS algorithm

converges to θ̃∗ = E[MN ]
N

, which under the same conditions is the convergence point

of the greedy algorithm as proven in Theorem 14.

This section is concluded with an example. Figure 4.2 shows the sam-

ple paths of the PFS and greedy algorithm on the same set of realized i.i.d.

exponential-1 random variables. The exponential random variables are unbounded

from above, but the convergence still occurs as expected. In the case of two expo-

nential random variables, the mean of the maximum order statistic is 1.5, so the

equilibrium point is given by [3/4, 3/4]T .

4.6 Rate of Convergence

4.6.1 Rate of Convergence to the Equilibrium Point

In Sections 4.4 and 4.5, it is shown that the PFS algorithm under the i.i.d.

model converges to a single average rate vector θ∗, and that θ∗ corresponds to the

performance of the greedy scheduler. The goal of this section is to find out how

fast ‖θn − θ∗‖ → 0. This section will leverage the results in Chapter 3 of [Che02],
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which are based on four assumptions, which are now stated:

1. εk > 0, εk → 0 as k →∞,
∑∞

k=1 εk =∞, and εk−εk+1

εk·εk+1
→ α ≥ 0 as k →∞.

2. A continuously differentiable function v(·) : Rl → R exists such that

sup
δ≤‖θ−θ∗‖≤∆

fT (θ)v(θ) < 0

for any ∆ > δ > 0, and v(θ∗) < inf‖θ‖=c0 for some c0 > 0 with c0 > ‖θ†‖,
where θ† is used in Equation 4.23.

3. The noise sequence {δMn} can be decomposed into two parts δMn = δMn
1 +

δMn
2 such that

∞∑
k=1

ε1−δk δMn
1 <∞ and δMn

2 = O(εδk)

for some δ ∈ (0, 1].

(Note: δMn is a single quantity, not to be confused with δ.)

4. h(·) is a measurable and locally bounded, and is differentiable at θ∗ such that

as θ → θ∗

h(θ) = F (θ − θ∗) + δ(θ)

δ(θ∗) = 0

δ(θ) = o (‖θ − θ∗‖) .

The matrix F is stable.

Assuming that these four conditions are satisfied, the following theorem is true:

Theorem 16. (Theorem 3.1.1, [Che02]) Under the four assumptions previously

stated, θn as given in Equation 4.23 converges to θ∗ with the following convergence

rate:

‖θn − θ∗‖ = o
(
εδn
)
, (4.26)

where δ is the one given in Assumption 3.
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To verify the assumptions required of Theorem 16 looks formidable, but for

the most part this is not the case. For example, it is shown in [Che02] that when

the gain sequence is of the form εk = a
k

for some constant a > 0, then εk−εk+1

εk·εk+1
→ 1

a
.

Thus, the gain sequence of the PFS algorithm clearly satisfies the first assumption

with a = 1. The second assumption is only needed to guarantee convergence of the

SA algorithm and is not involved in the derivation of the rate of convergence in

Theorem 16. The convergence of the PFS algorithm was proven using a different

approach in the previous two sections, so Assumption 2 is not required to find the

rate of convergence. In the fourth assumption, if h is measurable, locally bounded,

and differentiable at θ∗, then the matrix F is stable since θ∗ is a the unique zero

and global equilibrium. Therefore, to be able to utilize Theorem 16 and compute

the rate of convergence, Assumption 3 must be verified, and it must be shown

that h is measurable, locally bounded, and differentiable at θ∗. Showing these two

results yields the following theorem:

Corollary 5. Let Xi,n, . . . , XN,n be continuous, non-negative i.i.d. random vari-

ables for n ∈ N+ with continuous densities f such that E[X2
i,n] <∞. The conver-

gence rate of the PFS algorithm is given by

‖θn − θ∗‖ = o

(
1

nδ

)
, (4.27)

where δ = 1
2
− ε and ε > 0.

Proof. As mentioned prior to the statement of the corollary, this results imme-

diately follows from Theorem 16, and is just a matter of verifying all of the as-

sumptions, and all the assumptions are apparent except for Assumption 3 and the

differentiability of h at θ∗. To proof that Assumption 3 holds and to compute the

value of δ is based on Remark 3.1.2 in [Che02]. In the remark, it is shown that if

δMn is a martingale difference sequence, one can set δMn
1 = δMn and δMn

2 = 0

for all n. It is also shown that in order to have
∑∞

k=1

(
1
k

)1−δ
δMk < ∞ a.s. , it

suffices to have ∞∑
k=1

E
[

1

k2(1−δ)‖δM
k‖2|Fk

]
<∞ (4.28)

if δMn is a MDS such that supk E [‖δMn‖2|Fn] <∞. Under this condition, Equa-

tion 4.28 holds provided δ < 1
2
. The definition of the MDS δMn is given in
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Equations 4.9 and 4.10 and the condition that supk E [‖δMn‖2|Fn] <∞ holds be-

cause of the hypothesis on the second moment, E[X2
i,n] < ∞, and the fact all the

random variables are i.i.d. Therefore Assumption 3 holds with δ < 1
2
.

The final part of the proof is to show that h is measurable, locally bounded,

and differentiable at θ∗. The function h is clearly measurable from its definition

in Equation 4.8. To show that h is locally bounded, consider the first component

of h. Let 1(θn, X1) be the indicator function that the user corresponding to the

first component of h is scheduled, and let f denote the density of Xi,n. Then the

following expressions show that the first component of h, h(θn)1 is bounded.

h(θn)1 =

∫
x11(θn, X1)f(x1, . . . , xn)dx1 · · · dxN − θni

=

∫
x11(θn, X1)f(x1) · · · f(xN)dxx · · · dxN − θni

≤
∫
x1f(x1) · · · f(xN)dx1 · · · dxN − θni

=

∫
x1f(x1)dx1 − θni

= E[X1]− θni
<∞.

The last inequality is because E[X2
i,n] <∞. Since all the random variables are i.i.d.,

the above analysis holds for all components of h, and thus h is locally bounded.

To show that h is differentiable at θ∗ leverages an observation on the smoothness

of h in [KW04]. In their observation, it is shown that each component of h has

continuous derivative if f is bounded and continuous. Here, differentiability is only

required at θ∗, and f is bounded in the neighborhood of θ∗, otherwise f would not

be continuous. Therefore, since each component of h is differentiable at θ∗, h is

differentiable at θ∗, and thus Assumption 4 holds, completing the proof.

To see if this makes any sense, a simulation was run with N = 3 and Xi,n ∼
Exp(1). Figure 4.3 shows the results of the simulation. The convergence towards

equilibrium of the PFS algorithm will not be monotonic due to the randomness

of the rates and sample paths of the algorithm. The results of Theorem 16 and

Corollary 5 give the asymptotic scaling rate in terms of o notation. The red curve
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in Figure 4.3 shows the function f(n) = n−
1
2 . The long term convergence rate of

the PFS algorithm to equilibrium is slightly slower than this, but the curve shows

that the results of the theory are reasonable.

4.6.2 Asymptotic Covariance Matrix

In Section 4.6.1 the rate at which the proportional fair sharing algorithm

converged to the equilibrium point, or the greedy solution, was found as measured

by the Euclidean distance. Because the PFS algorithm is a random algorithm, the

vector θn−θ∗ is a random variable. The goal of this section is to that an appropriate

normalized sequence cn(θn−θ∗) converges to a normal random variable, where cn is

the normalizing sequence, and to to characterize the mean and covariance matrix

of this normal random variable.

Work has been done to identify this normal random variable. Two of the

more cited references in this area are [Sac58] and [Fab68]. A theorem in [Sac58],

adapted to the PFS framework, will be used to find the normal random variable

of interest as it applies to the PFS algorithm. The key theorem is now stated.

Theorem 17. (Theorem 5, [Sac58])

Let E[X2+ν
i,n ] < ∞ for some ν > 0. Let F be the Jacobian matrix of h(·), i.e.
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h(θ) = F (θ − θ∗) + δ(θ) with δ(θ∗) = 0 and δ(θ) = o (‖θ − θ∗‖), and let

lim
θ→θ∗

E
[
δM(θ)δM(θ)T

]
= π.

Finally, let P be the matrix of eigenvectors of −F and Λ be a diagonal matrix

whose diagonal values λi = Λii are the eigenvalues of −F and π∗ = P−1πP . Then

n1/2(θn− θ∗) is asymptotically normal with mean 0 and covariance matrix PQP−1

where Q is the matrix whose (i, j)th element is
π∗i,j

λi+λj−1
.

To successfully utilize the Theorem 17 requires the explicit computation of

F and π, which depends on the underlying distribution of the Xi,n. It is straight

forward to get a general form for π, which is stated in the following corollary.

Corollary 6. Let Xi,n have continuous density f and E[X2+ν
i,n ] < ∞ for some

ν > 0. Then π is a symmetric matrix with elements πij = 1
N
E[X2

max]−
(

E[Xmax]
N

)2

when i = j and πij = −
(

E[Xmax]
N

)2

when i 6= j, where N is the number of users.

Proof. Recall, that parameterized by θ, δM(θ) = I(θ,X)X − θ − h(θ). First,

consider the first diagonal element:

π11 = lim
θ→θ∗

E
[(
I(1)(θ,X)X(1) − θ(1) − h(1)(θ)

)2
]

Notice that as θ → θ∗, any product involving h(θ) goes to zero since h is smooth

and is zero at θ∗. Thus, the above equation becomes

π11 = lim
θ→θ∗

E
[(
I(1)(θ,X)X(1) − θ(1)

)2
]

(4.29)

= lim
θ→θ∗

E
[
I2

(1)(θ,X)X2
(1) − 2I(1)(θ,X)X(1) · θ(1) + θ2

(1)

]
(4.30)

= E
[
X2
max

]
· Pr(I(1)(θ

∗, X) = 1)− 2θ∗(1)E[Xmax] · Pr(I(1)(θ
∗, X) + (θ∗(1))

2

(4.31)

=
1

N
E
[
X2
max

]
− 2θ∗(1)

1

N
E[Xmax] + (θ∗(1))

2 (4.32)

=
1

N
E
[
X2
max

]
−
(
E[Xmax]

N

)2

(4.33)

where Equation (4.31) is due to the continuity of the density and Equation (4.33)

is due to the definition of θ∗(1) = E[Xmax]
N

. By the i.i.d. assumption on the Xi,n,
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πij = π11 when i = j. Now consider the off-diagonal element π1,2, given as follows:

π12 = lim
θ→θ∗

E
[(
I(1)(θ,X)X(1) − θ(1) − h(1)(θ)

)
·
(
I(2)(θ,X)X(2) − θ(2) − h(2)(θ)

)]
.

Evaluating this expression in a similar fashion as π11 yields

π12 = −
(
E[Xmax]

N

)2

since the terms involving the product I(1)(θ,X) · I(2)(θ,X) always equal zero due

to the fact only one component in the vector I(θ,X) can be non-zero. Once again,

by the i.i.d. assumption πij = π12 for i 6= j. Note that π can be written in the

special form π = E[Xmax]
N

IN −
(

E[Xmax]
N

)2

1N1TN where IN is the N × N identity

matrix and 1N is an N -dimension vector of 1s. This completes the corollary.

Although a general form is easily obtained for the matrix π to be used in

Theorem 17, the matrix F is more complicated. Rather than state a corollary,

two examples will be given in the simplest of cases to show how to evaluate F ,

how the evaluation scales with N , and then the application of F and π to find the

asymptotic covariance matrix of n1/2(θn − θ∗) as promised by Theorem 17.

Example 1.

Consider the case where N = 2 and the Xi,n are distributed i.i.d. according

to U [0, 1]. In this case, the distribution function of Xmax is Fmax(x) = x2 for

x ∈ [0, 1] and the density is given by fmax(x) = d
dx
Fmax(x) = 2x on the same

support. Using this, it is straight forward to compute E[X2
max] = 1

2
and E[Xmax] =

2
3
. Plugging these values into Corollary 6 to get the MDS covariance matrix yields

π =

[
5
36
−1

9

−1
9

5
36

]
.

Next, the Jacobian matrix must be computed. Due to the i.i.d. symmetry of the

problem, without loss of generality, consider the first component of h(θ):

h(1)(θ) = EX
[
I(1)(θ,X)X(1) − θ(1)

]
= EX [I(1)(θ,X)X(1)]− θ(1)

=

∫ 1

0

∫ 1

θ(1)
θ(2)

x2

x1dx1dx2 − θ(1) (4.34)
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where the indicator function determines the region of integration which is reflected

in the integration limits, i.e. X(1) is selected when
X(1)

θ(1)
≥ X(2)

θ(2)
which implies

X(1) ≥
θ(1)
θ(2)
X(2). Evaluating ∂

∂θ(1)
and ∂

∂θ(2)
of Equation (4.34) gives the first row of

the Jacobian matrix F , and by symmetry gives the full matrix F

F =

[
−2 1

1 −2

]
Using F , π and Theorem 17 gives an asymptotic covariance matrix Σ of

Σ =

[
0.0389 −0.0111

−0.0111 0.0389

]

A simulation was performed that simulated 104 iterations of the PFS algorithm

104 times and the empirical covariance matrix was found to be

Σsim =

[
0.0394 −0.0117

−0.0117 0.0394

]
which is very close to the theoretical value.

Example 2.

Consider the case where N = 3 and the Xi,n are distributed i.i.d. according

to U [0, 1]. This case is identical to the previous case except that there is an

additional user. Using the same computations as before, but with Fmax(x) = x3,

gives an MDS covariance matrix of

π =


11
80

− 1
16
− 1

16

− 1
16

11
80

− 1
16

− 1
16
− 1

16
11
80

 .
The key difference between the N = 2 and N = 3 case is the evaluation of

EX [I(1)(θ,X)X(1)]. In the N = 2 case, one must only consider when
X(1)

θ(1)
≥ X(2)

θ(2)
,

but in the N = 3 case one must consider
X(1)

θ(1)
≥ X(2)

θ(2)
and

X(1)

θ(1)
≥ X(3)

θ(3)
. With this

observation, I(1)X(1) can be written as

I(1)X(1) =

 X(1) if
X(1)

θ(1)
≥ X(2)

θ(2)
≥ X(3)

θ(3)
or

X(1)

θ(1)
≥ X(3)

θ(3)
≥ X(2)

θ(2)

0 otherwise
(4.35)
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The conditions for I(1)X(1) = X(1) represent the fact that the ratio
X(1)

θ(1)
needs

to be larger than max
{
X(2)

θ(2)
,
X(3)

θ(3)

}
. Each of the conditions produces a different

integration region for the evaluation of h(1)(θ). Thus, for N = 3, the analog of

Equation (4.34) is

h(1)(θ) = EX [I(1)(θ,X)X(1)]− θ(1)

=

∫ 1

0

∫ 1

θ(2)
θ(3)

x3

∫ 1

θ(1)
θ(2)

x2

x1dx1dx2dx3 +

∫ 1

0

∫ 1

θ(3)
θ(2)

x2

∫ 1

θ(1)
θ(3)

x3

x1dx1dx3dx2 − θ(1).

(4.36)

As in the N = 2 case, evaluating the partial derivatives of Equation (4.36) yields

F =


−3 1 1

1 −3 1

1 1 −3

 .
Although the computation of the Jacobian looks cumbersome, due to the symmetry

of the problem
∫ 1

0

∫ 1
θ(2)
θ(3)

x3

∫ 1
θ(1)
θ(2)

x2
x1dx1dx2dx3 is identical to∫ 1

0

∫ 1
θ(3)
θ(2)

x2

∫ 1
θ(1)
θ(3)

x3
x1dx1dx3dx2 if the roles of θ(2) and θ(3) are switched. Equation

(4.36) also gives the key to the general procedure for arbitraryN > 2 by considering

all possible orderings of the ratios
X(2)

θ(2)
, · · · , X(N)

θ(N)
. Once again, using π, F , and

Theorem 17 gives the asymptotic covariance matrix

Σ =


0.0232 −0.0054 −0.0054

−0.0054 0.0232 −0.0054

−0.0054 −0.0054 0.0232

 .
As before, a simulation was run that simulated 104 iterations of the PFS algorithm

104 times and the empirical covariance matrix was found to be

Σ =


0.0236 −0.0053 −0.0057

−0.0054 0.0231 −0.0057

−0.0057 −0.0054 0.0238


which is once again very close to the theoretically predicated value.
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4.7 Thresholding Feedback under the PFS Algo-

rithm

The PFS algorithm considered has each user in the system feedback their

instantaneous rate. When there are many users in the system, the overhead of each

user feeding back can become large. For the case when the transmitter utilizes

the random beamforming algorithm and a greedy scheduling algorithm is applied

([SH05, PR10a]), a thresholding method is proposed in [PR10b] to reduce the

feedback overhead as well as save transmit power at each user. The idea behind

thresholding in [PR10b] is that if the statistics are known, they can be used to

determine the likelihood of a user being selected for scheduling if that user were

to feedback and thus if the likelihood is too low, the user can decide not to feed

back. For example, when the greedy algorithm is implemented and there are many

users in the system, if one user experiences a small instantaneous rate, that user

should not feedback their rate information since it will most likely not be selected.

A thresholding procedure will be developed in this section to reduce the system

feedback overhead under the PFS scheduler.

The PFS algorithm is similar to the greedy algorithm, but is greedy with

respect to the ratio of current rate to average rate. A two-stage feedback mech-

anism is proposed that can be used to reduce feedback on the uplink channel at

the expense of introducing an additional layer of feedback in the downlink. The

function determining the user scheduled for time slot n + 1 is given by Equation

4.3. Let the base station, in addition to broadcasting the message of which user

is selected, also broadcast the updated average rate vector θn+1. Notice that to

notify all the users of the updated θn+1 only requires sending the index of the

scheduled user k and Xk,n+1 since with this information each user can produce the

updated average rate vector θn+1. Therefore the additional overhead is only the

value Xk,n+1 and the index k. With θn+1 known at all the users, this information

can be used to determine the likelihood of scheduling in the next time slot, similar

to the ideas introduced in [PR10b]. The two-stage feedback mechanism functions

as follows: in the first stage the transmitter feeds back the index of the currently
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scheduled user k and their instantaneous rate Xk,n+1, and then in the second stage

each user compares some function of their instantaneous rate for the next time slot

and θn+1 to some pre-designed threshold and feeds back their rate if it exceeds this

threshold.

The threshold that is considered is designed to address the following ques-

tion: how should the threshold be designed such that the difference between the

asymptotic average rate of the thresholded system compared to the asymptotic

average rate without thresholding is below some design parameter Rloss? Under

this metric, an optimal threshold for the previously mentioned two-stage feedback

scheme can be found. A slight modification of this scheme will also be considered

where in each time slot, the user with the minimum average rate feeds back their

rate, even if it falls below the threshold. A priori, it is unclear whether applying

a threshold to the PFS algorithm disrupts the algorithm’s convergence proven in

Sections 4.4 and 4.5. It will be shown that the thresholds considered applied to

the PFS algorithm still guarantee convergence, although this convergence will no

longer be to the same point as the greedy algorithm.

4.7.1 Pure Threshold

Defining the Pure Threshold

In this subsection, it is assumed that the thresholding decision is a function

of the full rate vector θn. The goal is to design a threshold T (N,Rloss) param-

eterized by the number of users in the system N and the amount of asymptotic

performance that is willing to be sacrificed, Rloss, in order to reduce the amount

of feedback. The threshold will take the following form: having computed θn, each
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user will calculate the following probability

P th
i,n+1 = Pr

(
X1,n+1

θ1,n

≤ Xi,n+1

θi,n
, . . . ,

Xi−1,n+1

θi−1,n

≤ Xi,n+1

θi,n
,
Xi+1,n+1

θi+1,n

≤ Xi,n+1

θi,n
, . . .

)
(4.37)

=
∏
j 6=i

Pr

(
Xj,n+1

θj,n
≤ Xi,n+1

θi,n

)
(4.38)

=
∏
j 6=i

Pr

(
Xj,n+1 ≤ Xi,n+1 ·

θj,n
θi,n

)
(4.39)

=
∏
j 6=i

F

(
Xi,n+1 ·

θj,n
θi,n

)
(4.40)

In Equation 4.37, P th
i,n+1 stands for the threshold probability for user i at time

n + 1, as it will be the quantity that will be compared to some threshold. The

quantity on the right of Equation 4.37 is the probability that user i has the largest

ratio of current rate to average scheduled rate for the next time slot n + 1, i.e.

the probability that user i will be scheduled for time slot n + 1. Equation 4.38

is due to the i.i.d. assumption on the Xi,j, Equation 4.39 is a rearrangement of

Equation 4.38, and Equation 4.40 substitutes in the definition of the CDF, where

F is the distribution function for the Xi,j. Notice that the argument of the CDF

in Equation 4.40 is known at user i since user i knows its own rate and all the

ratios
θj,n
θi,n

.

Having defined P th
i,n+1, the thresholding operation is as follows. If P th

i,n+1 <

T (N,Rloss), then user i does not feed back Xi,n+1, otherwise user i feeds back

Xi,n+1 to the transmitter. In order to design the threshold to meet the asymptotic

rate loss constraint, it must be understood how choosing the threshold T (N,Rloss)

affects the asymptotic performance of the system.

Convergence of the Thresholded Algorithm

In this section, the assumed convergence of the thresholded algorithm is

addressed. Under the feedback scheme presented in Section 4.7.1 the proportional
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fair scheduling algorithm in Equation 4.3 can be rewritten as

arg max
1≤i≤N

{
Xi,n+11[P thi,n+1>T (N,Rloss)]

di + θi,n

}
. (4.41)

The difference between Equation 4.3 and Equation 4.41 is the inclusion of the

indicator random variable 1[P thi,n+1>T (N,Rloss)] that determines whether or not a user

i exceeded the threshold. The product random variables Xi,n+11[P thi,n+1>T (N,Rloss)]
are no longer i.i.d. due to the dependence of the indicator random variable on

the entire histories of the past rates captured in the mean rates θn. To prove the

convergence of the thresholded PFS algorithm to a unique equilibrium, the effects

of the threshold on the mean vector field h are analyzed.

Due to the symmetry of the i.i.d. rate random variables, without loss of

generality consider the first component of the mean vector field h. From [KW04]

and the past analysis in Section 4.6.2, the first component of h is given by

h(1)(θ) = EX
[
I(1)(θ,X)X(1) − θ(1)

]
=

∫
x11[x1

θ1
≥x2
θ2
,...,

x1
θ1
≥xN
θN

] N∏
i=1

f(xi)dxi − θ(1) (4.42)

The thresholding mechanism alters the region of integration in Equation 4.42 due

to the additional indicator function. Therefore, for the first component of the mean

vector field under thresholding hth(1) is given by

hth(1)(θ) =

∫
x11[x1

θ1
≥x2
θ2
,...,

x1
θ1
≥xN
θN

]1[P thi (θ)>T (N,Rloss)]

N∏
i=1

f(xi)dxi − θ(1) (4.43)

=

∫
x11[x1

θ1
≥x2
θ2
,...,

x1
θ1
≥xN
θN

]1[∏
j 6=1 F

(
x1
θ1
θj

)
>T (N,Rloss)

] N∏
i=1

f(xi)dxi − θ(1).

(4.44)

In Equation 4.43, P th
i,n+1 is written as P th

i (θ) in the indicator variable since the mean

vector field is a function of the location θ in the space of average throughputs rather

than the past realization of any rate random variables. To prove the uniqueness

of the equilibrium point of the thresholded PFS algorithm, it is shown that the

thresholded mean vector field satisfies the Kamke condition, or K-condition for
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short. This condition was used in the proof of a unique equilibrium in [KW04].

Once the K-condition for hth(θ) is established, the implications of the K-condition

will lead to the desired result. Before proceeding with the proof, some definitions

are required.

Let x, y ∈ RN
+ , where RN

+ is the set of vectors with non-negative components,

and define the relation x ≤ y if xi ≤ yi for i ∈ {1, . . . , N}, i.e. every component

of x is less than or equal to every component of y. With this relation, the Kamke

condition can be defined on RN
+ .

Definition 4. (Kamke Condition [Smi95]) A function f : RN
+ → RN satisfies

the Kamke condition if for any x, y ∈ RN and i ∈ 1, . . . , N such that x ≤ y and

xi = yi, then fi(x) ≤ fi(y).

From [Smi95], it is known that f satisfies the K-condition if

∂fi
∂xj

(x) ≥ 0 when i 6= j (4.45)

Using this fact, the following Lemma is proven.

Lemma 5. Let the i.i.d. rate random variables have a continuous density f and

distribution F on R+. Then the thresholded mean vector field hth(θ) satisfies the

K-condition.

Proof. The indicator functions in the formulation of hth(θ) given by Equation 4.44

determine the region of integration. Therefore as mentioned before, and noticed

in [KW04], the region of integration changes continuously with θ, and because f

is continuous, hth(θ) will have continuous derivatives. Without loss of generality,

consider the first component of hth(θ) as given Equation 4.44. Fix θ except for

some component θj, j 6= 1. Also, rewrite the indicator function 1[x1
θ1
≥x2
θ2
,...,

x1
θ1
≥xN
θN

]
as 1[x1

θ1
≥x2
θ2

] · · ·1[x1
θ1
≥xN
θN

]. As a function of only θj, h
th(θj) is monotonically nonde-

creasing. To see this, notice that more values of x1 satisfy 1[
x1
θ1
≥
xj
θj

] as θj increases,

the other indicator terms are independent of θj and remain unchanged, and more

values of x1 satisfy 1[∏
j 6=1 F

(
x1
θ1
θj

)
>T (N,Rloss)

] as θj increases since F
(
x1
θ1
θj

)
is non-

decreasing in θj. Thus, the region of integration becomes larger as θj increases,
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and hence the integral representing hth(1) in Equation 4.44 is nondecreasing since the

integrand is nonnegative and the constant term θ(1) disappears when the deriva-

tive is taken w.r.t. θj, j 6= 1. Because hth(1) is a nondecreasing function of θj, the

partial derivative w.r.t. θj is non-negative. By Equation 4.45, hth(θ) satisfies the

K-condition.

With the previous Lemma established, the main result of this section re-

garding the convergence of the thresholded PFS algorithm is now established in

two parts. The first result shows that there exists an equilibrium point for the

thresholded PFS algorithm of the form θ∗th = c · 1N where c is some non-negative

constant and 1N is an N-dimension vector of 1s. The result proves that this equi-

librium point is in fact unique and stable. The first result is now stated in the

following corollary:

Corollary 7. Under the same conditions as Theorem 15, the thresholded PFS

algorithm of Section 4.7.1 with fixed threshold T has an equilibrium point of the

form θ∗th = c ·1N . Additionally the constant c is given by the expression E[Xscheduled]
N

where

E[Xscheduled] =
(

1− [F (T )]N
)
· T +

∫ ∞
T

(
1− [F (x)]N

)
dx.

Proof. To show that θ∗th is an equilibrium point is equivalent to showing that θ∗th

is a zero of the mean vector field h. Notice when θ∗th has the form θ∗th = c ·1N that

all the components of the fed back average rate vector are equal, so Equation 4.40

becomes

P th
i,n+1 =

∏
j 6=i

F (Xi,n+1) = [F (Xi,n+1)]N−1 (4.46)

which is the probability that all other users are experiencing rates smaller than the

rate of user i, i.e. the probability that user i has the maximum instantaneous rate.

Thus, the ith component of the mean vector field evaluated at θ∗th of the proposed

form evaluates to

hth(i) =

∫
xi1[arg max{x1,...,xN}=i]1[[F (xi)]

N−1>T ]

N∏
i=1

f(xi)dxi − θ(i). (4.47)

The key property of Equation 4.47 is that the integral term no longer depends on

θ and by the symmetry of the i.i.d. model, the integral terms are equivalent for
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each i ∈ {1, . . . , N}. Since all the random variables are non-negative, the integral

term in Equation 4.47 evaluates to some non-negative number, so there is some

non-negative θ(i) that causes the equation to evaluate to zero, and all the θ(i)s are

equivalent. This shows that there exists some c such that θ∗th = c · 1N is a zero of

the mean vector field. The next step is to characterize the constant c.

Notice that P th
i,n+1 is a random variable, and recall that for any random

variable X with distribution function FX that FX(X) =d U , where U is a uniform

random variable and =d mean equals in distribution. Therefore at θ∗th = c · 1N ,

from Equation 4.46, P th
i,n+1 =d U

N−1. Using this fact for the threshold T , the

probability at θ∗th = c · 1N that P th
i,n+1 ≤ T can be explicitly calculated as follows:

Pr
[
P th
i,n+1 ≤ T

]
= Pr

[
(F (Xi,n+1))N−1 ≤ T

]
= Pr

[
F (Xi,n+1) ≤ T

1
N−1

]
= Pr

[
U ≤ T

1
N−1

]
= T

1
N−1 . (4.48)

Equation 4.48 yields the probability of a user not feeding back at θ∗th = c · 1N
for a threshold T . Let F be the distribution function for a non-negative random

variable X. The distribution function of the thresholded random variable

Xth =

{
X X ≥ T

0 X < T
(4.49)

is Fth, used extensively in [PR10b], and is given by

Fth(x) =


F (x) x ≥ T

F (T ) 0 ≤ x < T

0 x < 0

(4.50)

Equation 4.50 can be interpreted as the probability mass less than T concentrates

at zero, which is the probability that the user does not feedback. Figure 4.4 gives

an example of the truncated distribution function a uniform random variable being

truncated at T = 0.5.

Recall from Sections 4.4 and 4.5, that when θ∗th = c ·1N , the scheduling rule

given by Equation 4.3 becomes the greedy schedule rule. Thus at θ∗th = c·1N , if any
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Figure 4.4: Uniform Distribution Truncated at T = 0.5

user experiences P th
i,n+1 > T and feeds back Xi,n+1, then the maximum ratio will

be known at the transmitter. To see this, notice that P th
i,n+1 at θ∗th = c · 1N given

by Equation 4.46 is monotonic in Xi,n+1 due to the monotonicity of distribution

functions. Thus if at least one user exceeds the threshold at θ∗th = c · 1N , the

thresholded algorithm performs the same as if there was no threshold.

With the previous definitions and observations in hand, the performance of

the thresholded system can be determined for a fixed threshold T . Equation 4.50

is the distribution function of the fed back rate random variable at equilibrium.

At θ∗th = c · 1N , the PFS algorithm selects the largest rate, so the distribution of

the scheduled rate is given by

Fmax
th (x) =


[F (x)]N x ≥ T

[F (T )]N 0 ≤ x < T

0 x < 0

(4.51)

Using Equation 4.51, the mean of the scheduled rate at θ∗th = c·1N can be computed

as follows:

E [Xscheduled] =

∫ ∞
0

(1− Fmax
th (x)) dx (4.52)

=

∫ T

0

(
1− [F (T )]N

)
dx+

∫ ∞
T

(
1− [F (x)]N

)
dx (4.53)

=
(

1− [F (T )]N
)
· T +

∫ ∞
T

(
1− [F (x)]N

)
dx. (4.54)
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Equation 4.54 is the value of c given by the corollary.

Notice that E [Xscheduled] is always less than or equal to the performance

of the unthresholded PFS algorithm at equilibrium, or equivalently the greedy

algorithm, since in Equation 4.53∫ T

0

(
1− [F (T )]N

)
dx ≤

∫ T

0

(
1− [F (x)]N

)
dx

for any T since F , by definition, is monotonically nondecreasing.

Corollary 7 shows that there is at least one zero to the mean vector field.

It remains to show that this is in fact the only equilibrium point and that the PFS

algorithm converges to it. This result is given in the following corollary.

Corollary 8. Under the same conditions as Theorem 15, the thresholded PFS

algorithm of Section 4.7.1 with fixed threshold T converges to E[Xscheduled]
N

.

Proof. From the calculations done in Section 4.7.1, there exists at least one zero

to the thresholded mean vector field hth(θ), namely θ = E[Xscheduled]
N

. The goal is

to show that this is in fact the only equilibrium point. The proof of the unique

equilibrium point given in [KW04] is composed of two parts. Suppose θ∗ is the

equilibrium point and let θ(0) be the initial condition of the PFS algorithm. The

first part of the proof shows that for all starting points θ(0) ≤ θ∗, the algorithm

converges to θ∗ as t→∞. The second part of the proof considers starting points

θ(0) ≥ θ∗, θ(0) 6= θ∗ and shows that these points also converge to θ∗ asymptotically

in time. The monotonicity theorem given by Theorem 4.1 in [KW04] covers the

remaining possibilities, so that all possible initial conditions θ(0) converge to θ∗ as

t → ∞. By Lemma 5, the the first part of the proof and Theorem 4.1 in [KW04]

hold, so it remains to show that for θ(0) ≥ θ∗, θ(0) 6= θ∗ the PFS algorithm

converges to θ∗.

Let θ∗ = E[Xscheduled]
N

and define the set Q(θ) = {x : x ≥ θ}. Consider the set

Q̃(θ∗) = Q(θ∗)− θ∗, i.e. the set Q(θ∗) with θ∗ removed. For every point θ ∈ Q̃(θ∗),

there is a point θ̂ = c · 1N , where 1N is a N-dimensional vector of ones and c a

positive scalar, such that θ ≤ θ̂. For θ̂, the integral part of hth(1) given in Equation
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4.44 equals∫
x11[x1

θ1
≥x2
θ2
,...,

x1
θ1
≥xN
θN

]1[∏
j 6=1 F

(
x1
θ1
θj

)
>T (N,Rloss)

] N∏
i=1

f(xi)dxi =
E[Xscheduled]

N
,

(4.55)

which is true of each component of hth. This is because when all the components of

θ̂ are equal, the integral is the expectation of that component being the maximum

and exceeding the threshold, which is given by E[Xscheduled]
N

. Because θ̂ ∈ Q̃(θ∗),

θ̂i ≥ E[Xscheduled]
N

and thus when evaluating hth(θ̂) given by Equation 4.44 each

component of hth(θ̂) is negative. Thus by the K-condition guaranteed by Lemma

5, for each θ ∈ Q̃(θ∗), hth(θ) has strictly negative components. As in [KW04], this

combined with monotonicity implies that all paths with initial condition θ(0) ∈
Q(θ∗) converge to θ∗. Therefore θ∗ = E[Xscheduled]

N
is the unique equilibrium of the

thresholded PFS algorithm.

The previous results show that for any threshold T that there is a unique

equilibrium that the PFS algorithm converges to. In the next section it is shown

how to select T to satisfy the rate loss constraint Rloss.

Threshold Design

The definition of E [Xscheduled] given in Equation 4.52 was for a fixed thresh-

old T . The goal is to design a threshold T (N,Rloss) that is parameterized by the

number of users and the acceptable loss. Let Rloss ∈ [0,E [Xmax]] represent the

amount of asymptotic performance that can be acceptably lost due to threshold-

ing. Xmax is the maximum order statistic. Rloss cannot exceed E [Xmax] because

this is the asymptotic performance of the system without a threshold as previously

proven. The desired threshold T (N,Rloss) will be found in two steps. First, define

a temporary threshold T ′ that is also parameterized by N and Rloss that satisfies

the following equation:
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Rloss = E [Xmax]− E [Xscheduled]

=

∫ ∞
0

(1− Fmax(x)) dx−
∫ ∞

0

(1− Fmax
th (x)) dx

=

∫ T ′

0

(
1− F (x)N

)
dx−

∫ T ′

0

(
1− F (T )N

)
dx

= T ′F (T ′)N −
∫ T ′

0

F (x)Ndx (4.56)

An iterative algorithm, or in some case a close form solution, can be used to find

the value of T ′ that satisfies Equation 4.56.

The quantity T ′ is an intermediary because the random variables themselves

are not compared to T ′ to determine whether or not to feedback; the value that

is compared to a threshold is P th
i,n+1. To achieve the rate loss Rloss given by T ′,

T (N,Rloss) should be chosen such that the probability of a user not feeding back

at equilibrium equal T ′, i.e.

Pr
[
P th
i,n+1 ≤ T (N,Rloss)

]
= T ′. (4.57)

Using Equation 4.48, the threshold T (N,Rloss) can be found as follows:

Pr
[
P th
i,n+1 ≤ T (N,Rloss)

]
= T (N,Rloss)

1
N−1 = T ′

⇒ T (N,Rloss) = T ′N−1. (4.58)

At equilibrium, the probability that a user does not feedback is given by T ′,

thus the number of users that do not feedback is a binomial random variable with

parameters N and T ′. Thus for this thresholding scheme, the average number of

users not feeding back is given by NT ′, which is the asymptotic average savings in

feedback. Equation 4.58 can seem abstract, so the following example will provide

a closed form solution for the case of i.i.d. uniform random variables.

Example 3.

Let there be N users, each experiencing i.i.d. uniform random variables and

let Rloss ∈ [0,E [Xmax]] be the desired loss. The first task is to find the precursor
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Figure 4.5: Threshold for N = 2, Rloss = 1
3

threshold, T ′ as indicated by Equation 4.56. This can be done as follows:

Rloss = T ′F (T ′)N −
∫ T ′

0

F (x)Ndx

= T ′N+1 − T ′N+1

N + 1

=
N

N + 1
T ′N+1

⇒ T ′ =

[
N + 1

N
Rloss

] 1
N+1

(4.59)

Having solved for T ′, the threshold T (N,Rloss) can be found using Equation 4.58:

T (N,Rloss) = T ′N−1 =

[
N + 1

N
Rloss

]N−1
N+1

. (4.60)

Figure 4.5 shows an example where there are N = 2 users with i.i.d. uniform

random variables and Rloss = 1
3
. In this case, The expected asymptotic throughput

of the unthresholded PFS algorithm is E[Xmax] = 2
3
, and since there are N = 2

users, this yields an unthresholded equilibrium point of [1/3, 1/3]T in Figure 4.5.

With Rloss = 1
3
, the asymptotic throughput of the thresholded PFS algorithm is

expected to be 1
3
, yielding an equilibrium point for the thresholded algorithm of

[1/6, 1/6]T , which is indeed the equilibrium point shown in Figure 4.5. A sample

path of the thresholded PFS algorithm with the threshold given by Equation 4.60

is also plotted in Figure 4.5.
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4.7.2 Modified Threshold

The thresholding scheme presented in Section 4.7.1 can immediately be im-

proved upon by allowing slightly more feedback. In the previous scheme, when no

user exceeds the threshold, it is assumed that throughput is zero for that schedul-

ing epoch. The modified thresholding scheme of this section assumes that the user

with the smallest average throughput at time period n + 1 will always feedback

their observed rate random variable. The users can determine if they have the

smallest average throughput because average rate vector θn is known. Therefore,

the feedback scheme in this section is identical to that of Section 4.7.1 except for

the fact that the user with the smallest average throughput always feeds back

its rate. As in Section 4.7.1, the convergence of this thresholding scheme will be

proven via two corollaries; one corollary showing the existence of a zero of the

mean vector field and one corollary showing that this equilibrium is the only point

of convergence of the algorithm.

Corollary 9. Under the same conditions as Theorem 15, the thresholded PFS

algorithm just described with fixed threshold T has an equilibrium point of the form

θ∗th = c ·1N . Additionally the constant c is given by the expression
E[X′scheduled]

N
where

E[X ′scheduled] = EY [Y ] =

∫ ∞
0

(1− Fy(y)) dy

and

FY (y) =

{
FX(y) · FX(T )N−1 if y ≤ T

Fmax(y) if y > T

Proof. There are two cases to consider when analyzing this scheme: when P th
i,n+1

exceeds the threshold for at least one user and when no user exceeds the threshold.

When no user exceeds the threshold, the central controller will select the rate of

the user with the smallest average throughput. In the case when at least one

user exceeds the threshold, than as previously mentioned, at θ∗th = c · 1N the true

maximum rate will have been fed back. Consider a fixed threshold and define the

following random variable:

Y =

{
X1X≤T if Xmax ≤ T

Xmax if Xmax > T
(4.61)
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where X is the rate random variable, 1 is an indicator random variable and Xmax

is the maximum of n i.i.d. copies of X. At θ∗th = c · 1N , the random variable Y

defined above is the random variable that represents the rate selected by the central

controller. When Xmax ≤ T , then the user with the smallest average throughput

will feed back its instantaneous rate, which is distributed as X conditioned on

X ≤ T , and when Xmax > T , the true max is known, conditioned on Xmax > T ,

and chosen at the controller.

The distribution function of Y is given by FY (y) = Pr [Y ≤ y], and this can

be broken into two cases depending on if y ≤ T or y > T . When y ≤ T , then

FY (y) = Pr[Y ≤ y] = Pr[X ≤ y|X ≤ T ] · Pr[Xmax ≤ T ]

=
FX(y)

FX(T )
· Fmax(T ) =

FX(y)

FX(T )
· FX(T )N

= FX(y) · FX(T )N−1 (4.62)

where Pr[X ≤ y|X ≤ T ] = FX(y)
FX(T )

and Pr[Xmax ≤ T ] = FX(T )N . Likewise, when

y > T , then the distribution function is given by

FY (y) = Pr[Y ≤ y] = Pr[Xmax ≤ y|Xmax > T ] · Pr[Xmax > T ]

=
FX(y)N

1− FX(T )N
· (1− FX(T )N) = FX(y)N = Fmax(y). (4.63)

To combine these results yields:

FY (y) =

{
FX(y) · FX(T )N−1 if y ≤ T

Fmax(y) if y > T
(4.64)

Figure 4.6 gives an example of FY (y) and FXmax(x) when X ∼ U [0, 1], N = 2,

and T = 0.5. The linear portion up to y = 0.5 corresponds with FX(y) = y for

the uniform distribution and it is scaled by FX(T )N−1 = 0.5. After y = 0.5, the

distribution is equal to the distribution of the maximum order statistic, which in

this case is Fmax(y) = y2.

Let X ′scheduled be the random rate selected by the scheduler at θ∗th = c · 1N
under this modified thresholding scheme. The average throughput is given by

E[X ′scheduled] = EY [Y ] =

∫ ∞
0

(1− Fy(y)) dy (4.65)

This is the analog of Equation 4.52 in Section 4.7.1.
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Aside: The distribution used in the design of T (N,Rloss) in Section 4.7.1

is given by Equation 4.51. The methods used here in deriving Equation 4.64 are

a generalization of Equation 4.51, i.e. Equation 4.51 can be derived from these

methods. In Section 4.7.1, if no user exceeds the threshold, then a rate of zero is

assigned for that time period. This is equivalent to setting Y = 0 if Xmax ≤ T in

Equation 4.61. Therefore, computing Equation 4.62 in this case yields

FY (y) = Pr[Y ≤ y] = Pr[0 ≤ y|X ≤ T ] · Pr[Xmax ≤ T ] = FX(T )N ,

which is identical to the result given in Equation 4.51 when Xmax ≤ T . When

Xmax > T , the two equations are clearly identical.

Having addressed the existence of an equilibrium point with Corollary 9,

the following corollary says that this is the only equilibrium, and the modified

thresholding scheme converges to this point.

Corollary 10. Under the same conditions as Theorem 15, the modified thresholded

PFS algorithm of Section 4.7.2 with fixed threshold T converges to
E[X′scheduled]

N
as

given by Equation 4.65.

Proof. The same arguments as the proof of Corollary 8 yield the desired result.

Corollaries 9 and 10 analyze where the PFS algorithm converges to under

the modified thresholding scheme for a fixed threshold T . The goal is to design
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T as a function of the number of users N such that a rate loss constraint Rloss is

satisfied. The solution to the design of T (N,Rloss) in section 4.7.1 can be applied

to this modified feedback scheme using the distribution from Equation 4.64 and the

expectation in Equation 4.65. That is to say, for a given N and Rloss, first compute

the precursor threshold T ′ using these equations, and then use Equation 4.58 to

find T (N,Rloss). An important note is that for this scheme Rloss ∈ [0,E[X]], rather

than in the previous case when Rloss ∈ [0,E[Xmax]]. This is because the user with

the minimum average throughput always feeds back their observed instantaneous

rate and thus the system on average cannot perform worse than E[X].

For this modified scheme let N ′feedback be the number of users feeding back

rate information at equilbrium. The average number of users feeding back for this

scheme is given by

E[N ′feedback] = 1 + (N − 1) · (1− T ′). (4.66)

The constant term 1 is due to the fact that at least one user is always feeding back

(the user with the smallest average rate), and the other N−1 users feedback if their

rate exceeds the threshold. This probability is given by T ′ as shown in Equation

4.57. Therefore the average asymptotic savings in the amount of feedback of this

scheme is given by

N − E[N ′feedback] = N − (1 + (N − 1) · (1− T ′)) = (N − 1)T ′. (4.67)

For concreteness, Example 3 is revisited under the new modified thresholding

scheme.

Example 4.

Under the same set up as Example 3, i.e. N = 2 users experiencing i.i.d.

uniform random variables, consider applying the same threshold but under the

modified framework. From Example 1, the threshold is T
(
2, 1

3

)
=
(

1
2

) 1
3 and plug-

ging this into Equation 4.65 gives an asymptotic throughput of 7
12

, corresponding

to an equilibrium point of [7/24, 7/24]T . Figure 4.7 shows a sample run of the

thresholded PFS algorithm, and the equilibrium point matches exactly what the

theory predicts. Also notice that for the same threshold, the modified scheme has
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Figure 4.7: Modified Threshold for N = 2 and T =
(

1
2

) 1
3

a larger rate than the original scheme due to the fact that at least one user always

feeds back, which mathematically corresponds to Xscheduled ≤ X ′scheduled for the

same threshold.

This comparison is not fair since the threshold was designed for a specific

Rloss under the feedback scheme in Section 4.7.1. In Example 3, Rloss = 1
3
, but in

this case Rloss > E[X], which is the worst case scenario as previously described.

Choosing Rloss = 1
12

and working through the machinery provides T (2, 1
12

) =
(

1
2

) 1
3

which is the same threshold used in Example 3.

4.8 Additional Thresholding Methods

In Section 4.7 the threshold was based on the idea that only the users who

are most likely to be scheduled should be fed back. The threshold was mathemati-

cal quantified by the quantity given in Equation 4.40 and the theory was developed

from this point of view. In this section, additional thresholding mechanisms are

developed and analyzed. The first new method is based on the observation that

the metric defined in Equation 4.40 depends on n − 1 marginal distributions and

thus computationally it may be expensive to compute or requires the use of n− 1

table look ups. A simpler thresholding metric will be based upon a single marginal

distribution. The three thresholds considered in Section 3.5 of Chapter 3 will be
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applied to a system running the proportional fair sharing scheduler.

4.8.1 Minimum Average Rate Feedback

Pure Threshold

In this subsection, the threshold is a function of the minimum average

throughput

θmin,n = min{θ1,n, . . . , θN,n}

rather than the full average rate vector θn as in Section 4.7.1. This scheme can

reduce computational complexity since accurate evaluation of P th
i,n+1 given by Equa-

tion 4.40 may be difficult. (Note: Assuming a particular distribution on the rates,

Equation 4.40 can be implemented as a table look up). Once again, the goal is to

design a threshold T̃ (N,Rloss) to help reduce the amount of feedback from the users

to the transmitter. Having received θmin,n, each user will compute the following

probability:

P̃ th
i,n+1 = Pr

[
Xmin,n+1

θmin,n
<
Xi,n+1

θi,n

]
(4.68)

where Xmin,n+1 is the random variable associated with the user with the smallest

average throughput. The value of Xmin,n+1 is of course unknown at all of the

users, but under the i.i.d. assumption Xmin,n+1 ∼ F , and to avoid confusion

Xmin,n will be denoted as X ∼ F . Equation 4.68 is the analog to Equation 4.40

for this scheme.

The computed value of P̃ th
i,n+1 will be compared to the threshold T̃ (N,Rloss)

at each user. If the ith user’s P̃ th
i,n+1 exceeds the threshold, then Xi,n+1 is fed back

to the central controller, otherwise nothing is fed back. By the monotonicity of

Equation 4.68 as a function of θmin, n (and thus monotonically non-decreasing as a

function of θj,n, j 6= i), it is straight forward to show that this thresholding scheme

converges using the same arguments as Corollary 7 and Corollary 8. The equilib-

rium point is once again of the form θ∗th = c · 1N and for a fixed parameterization

(N,Rloss) the constant c is equivalent to c from Section 4.7.1 because in both cases

the thresholds are designed to meet some rate loss constraint for a given number
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of users in the system. Thus knowing that the algorithm converges, and know-

ing where it converges to, the last challenge the actual design of the threshold

T̃ (N,Rloss), which will now be addressed.

At equilibrium, all of the components of the average rate vector θn are

equal, so Equation 4.68 becomes

P̃ th
i,n+1 = Pr [X < Xi,n+1] , (4.69)

which is a random variable. The probability that P̃ th
i,n+1 falls below the desired

threshold T̃ (N,Rloss) is critical in the design of the threshold. To compute this

probability, first notice that Equation 4.69 can be rewritten as:

P̃ th
i,n+1 = 1− Pr [Xi,n+1 ≤ X]

= 1− FXi,n+1
(X) = 1− FX(X)

=d 1− U =d U (4.70)

where FXi,n+1
= FX under the i.i.d. assumption and U is a uniform random

variable. The probability that P̃ th
i,n+1 does not exceed the threshold can now be

computed using Equation 4.70 as follows:

Pr
[
P̃ th
i,n+1 ≤ T̃ (N,Rloss)

]
= Pr

[
1− U ≤ T̃ (N,Rloss)

]
= Pr

[
1− T̃ (N,Rloss) ≤ U

]
= 1− Pr

[
U ≤ 1− T̃ (N,Rloss)

]
= 1−

(
1− T̃ (N,Rloss)

)
= T̃ (N,Rloss). (4.71)

Comparing this to Equation 4.48, the difference in using the entire average rate

vector θn versus θmin,n is the exponent of 1
N−1

versus 1.

Having established Equation 4.71, the computation of T̃ (N,Rloss) follows

the same procedure as Section 4.7.1. The characterization of the precursor thresh-

old T ′ for a desired Rloss remains unchanged and is given by Equation 4.56. To

find T̃ (N,Rloss), the analogous version of Equation 4.57 is evaluated:

Pr
[
P̃ th
i,n+1 ≤ T̃ (N,Rloss)

]
= T̃ (N,Rloss) = T ′, (4.72)
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Figure 4.8: Comparing Threshold Schemes for N = 2 and Rloss = 1
3

where the first equality comes from Equation 4.71. Equation 4.57 says that the

threshold should be set to the solution of T ′ for a given N and Rloss, as opposed to

some power of T ′ as given in Section 4.7.1. For both the schemes considered here

and in Section 4.7.1, the average savings in feedback from the users at equilibrium

is given by NT ′. Therefore, under the metric of designing a threshold as a function

of N and Rloss, the scheme presented in this section is superior in the sense that

it achieve the same performance for less computation. However, while the two

schemes considered here perform identically at equilibrium, when the system is

starting off, their sample paths and performances will differ. Figure 4.8 shows

the two schemes run on the same realizations of the random rates. The plot on

the right shows the distance from the equilibrium point. On this realization, the

convergence of the scheme utilizing the full rate vector θn converges faster than

when only θmin,n is used. While the relation of the convergence properties of the

two schemes depend on the realization, these authors have noticed generally the

full feedback scheme converges faster. Because of this, it is possible to use a hybrid

scheme that combines the two methods. In the transient initialization phase, the

scheme where θn is used to compute the n − 1 marginal distribution is run, and

after a significant time, the system switches over to the scheme where only θmin,n

is used.
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Modified Threshold

In this subsection the previous feedback scheme where the threshold is only

a function of θmin,n is modified in the same way as Section 4.7.2. Because θmin,n

is computed and known at each user, and each user computes its own average

throughput, each user knows if it has the minimum average throughput. If the

user’s average throughput equals the minimum average throughput θmin,n, then

that user will feed back its instantaneous rate regardless of whether or not P̃ th
i,n+1

exceeds the threshold.

The analysis of this modified scheme is the same as Section 4.7.2. The

distribution of the selected rates at equilibrium is once again given by Equation

4.64, and thus the computation to find the precursor threshold T ′ is the same.

With T ′ computed for the parameters N and Rloss , Equation 4.72 yields that the

threshold should be set to T ′. The fact that the threshold T̃ (N,Rloss) is set to T ′

rather than T ′N−1 as in Section 4.7 is in fact the only formal difference between

this section and that of Section 4.7.2. The average savings in feedback from the

users at equilibrium is given by Equation 4.67.

4.8.2 Thresholds for Random Beamforming

All the results of this chapter have been developed for any general sys-

tem utilizing a proportional fair sharing scheduling algorithm with i.i.d. rates. In

Chapter 3, three different thresholding metrics were proposed to help reduce feed-

back in a random beamforming transmit system utilizing the greedy scheduling

algorithm. In the random beamforming context, the three thresholding metrics

will be considered under the proportional fair sharing algorithm.

The difference between the thresholding methods of Chapter 3 and this

chapter is that in Chapter 3 the observation random variables are compared di-

rectly to a threshold as opposed to the thresholds presented previously in this

chapter where a probability was compared to a threshold. All the thresholds de-

rived in Chapter 3 lead to distribution functions for the random variables at the

scheduler of the form given by Equation 4.49. Therefore, under the thresholds

considered in Chapter 3, the random variables can be thought of as i.i.d. random
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variables with a thresholded distribution. Therefore, if the proportional fair shar-

ing algorithm is used instead of the greedy scheduler, the results of Section 4.5

guarantee that the rates converge to same average throughput as the greedy algo-

rithm. Therefore, under the same design criterion as those considered in Chapter

3, the same thresholds can be used under the proportional fair sharing algorithm

and yield asymptotically in time the same results. For example, consider restrict-

ing the average number of users feeding back, that is on average only k ≤ N of

the users should provide feedback. Using Equation 3.18 the threshold is designed.

This threshold can be used under the PFS scheduling algorithm and the average

throughput of each user will converge to the results of Chapter 3.

4.9 Conclusion

This chapter addresses the asymptotic performance of the proportional fair

sharing algorithm under i.i.d. rate models. Under this model it is shown in the

state space of average throughput and under suitable conditions on the distribution

of the rates that the PFS algorithm converges to the same fixed point as the greedy

scheduling algorithm. Therefore, from the point of view of average throughput,

asymptotically in time there is no difference between using the PFS algorithm and

the greedy algorithm.

Under i.i.d. models, it is shown that the rate of convergence of the PFS

algorithm to the equilibrium average throughput point is essentially the fastest

rate possible for a stochastic approximation procedure. The distance of the PFS

algorithm from the equilibrium point at any given time is a random variable.

Asymptotically in time, it is known that this distance becomes distributed as a

zero mean normal random variable whose covariance matrix is characterized under

the i.i.d. model.

To reduce the amount of CSI feedback overhead in the system, a thresh-

olding scheme is analyzed. Under this scheme, the equilibrium point of the PFS

algorithm is found. In an effort to increase the average throughput of the thresh-

olded system, a modification is made that allows the user with the smallest average
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throughput to always provide feedback. Once again, under this modification, the

equilibrium point of the system is characterized.

This chapter contains material in preparation for submission to IEEE Trans-

actions on Information Theory titled “Greedy Scheduling and Proportional Fair

Sharing Under i.i.d. Models”. This work is coauthored with Professor Bhaskar D.

Rao.



Chapter 5

Conclusion

Design of efficient methods to effectively utilize the multi-user diversity and

maximize capacity of the broadcast channel is a very challenging problem. One

central aspect of any high performance solution to this problem is the require-

ment that the transmitter have channel state information about the users. Under

the random beamforming transmission scheme, the CSI is represented as a sin-

gle scalar quantity, the signal-to-interference plus noise ratio. With this metric

in mind, the question confronted by this work is how to reduce the amount of

feedback in the system yet still provide good system performance. Several ap-

proaches to this question have been analyzed. One method is to reduce feedback

by exploiting the spatial diversity that exists when each user has multiple receive

antennas, thus providing multiple SINR samples or the opportunity to implement

more sophisticated receive structures. Another approach to reduce feedback is the

design and implementation of a threshold such that users whose channel quality

does not exceed the threshold do not provide feedback. Lastly, due to the greedy

scheduling algorithm in the random beamforming scheme, fairness is considered.

The results are summarized in more detail in the following sections.
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5.1 Reduced Feedback Schemes using Random

Beamforming in MIMO Broadcast Channels

Chapter 2 considers feedback reduction by exploiting the multiple receive

antennas at each user. These techniques, while reducing feedback, still achieve the

desired asymptotic scaling rate of the sum-rate throughput. The contributions of

this chapter are now listed:

• The distribution of the maximum order statistic of the SINR over both receive

antennas and transmit beamforming vectors at any user is derived. Because

the SINR values on a single receive antenna over the various transmit beams

are correlated, the distribution of the maximum order statistic leveraged

previous results on the maximum of ratios of exponential random variables.

• Under the feedback scheme where only the largest SINR measured at each

user over both transmit beams and receive antennas is fed back achieves the

desired sum-rate scaling rate of log log n.

• Utilizing the multiple receive antennas, each user implements an LMMSE

receive filter. The distribution of the post-processed SINR values is found.

• Two feedback schemes with LMMSE receive filtering are considered. The first

scheme has each user feed back the post-processed SINR for each transmit

beam. Under this scheme it is shown that the sum-rate scaling behaves as

desired, i.e. log log n. The second scheme has each user feed back only the

maximum of the M post-processed SINR values. The distribution of this

random variable could not be analytically found due to the complicated way

in which the random variables become correlated. Bounds are found for

this unknown distribution, and the bounds are shown to exhibit the log log n

sum-rate scaling rate, and thus this reduced feedback scheme also exhibits

this rate.

• A fixed finite threshold is considered to reduce the total feedback load in the

system. It is shown that for any such threshold, asymptotically as the number



127

of users grows to infinity, the difference between the rate of the system with

a threshold and without a threshold goes to zero.

5.2 Reducing Feedback in Broadcast Channels

via Thresholding

Chapter 3 extends the idea first mentioned at the end of Chapter 2 regarding

reducing feedback via thresholds. A threshold should be designed as a function of

the number of users in the system. The asymptotic scaling rate of any successful

threshold as a function of the number of users is found. By success, it is meant that

the sum-rate throughput of the system under the threshold still achieves a scaling

rate of log log n. Additionally, the explicit design of thresholds under different

proposed metrics is undertaken. These contributions are now described in detail.

• A sufficient condition is found for the asymptotic scaling rate as a function

of the number of users in the system of any possible thresholding function

such that the sum-rate throughput of the thresholded system still grows as

log log n. This result is based on the theory of extreme value distributions

and their domain of attraction.

• A corresponding necessary condition is found for the asymptotic scaling rate

of any thresholding function. The necessary condition leverages results on

the asymptotic stability of order statistics.

• A threshold design metric is proposed that constrains the probability of the

event that any user does not exceed the threshold for any transmit beam-

forming vector. When such an event occurs, the transmitter does not have

CSI for at least one transmit direction and thus multi-user diversity cannot

be fully utilized. Parameterized by the constraint on this probability, as a

function of the number of users in the system, an explicit formulation of the

optimal threshold is derived.

• A second threshold design metric is to constrain the average number of users
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providing feed back for each transmit beam. Under this metric, the optimal

threshold is found.

• The last threshold metric considers constraining the difference between the

sum-rate throughput of the system without a threshold and the sum-rate

throughput of the thresholded system. The optimal threshold is found under

the constraint on the difference in these rates.

5.3 Greedy Scheduling and Proportional Fair

Sharing Under i.i.d. Models

Chapter 4 confronts the issue of fairness in the random beamforming trans-

mit scheme. The multi-user diversity is utilized by selecting the users with the

best channel conditions. The greedy nature of the scheduling algorithm implies

that there can be long periods of time in which a particular user may not be

scheduled. To address this problem, the use of the proportional fair sharing algo-

rithm is considered. This algorithm attempts to schedule users who have not been

scheduled in a long period of time yet still balance high instantaneous throughput.

The asymptotic system performance under the PFS scheduling algorithm is found.

Additionally, motivated by the results in Chapters 2 and 3, the performance of

the PFS algorithm is considered when a thresholding scheme is implemented. The

contributions of this chapter are detailed below:

• The appropriate state-space to consider the asymptotic average rate of each

user is identified. In this state space the convergence point of the greedy

scheduling algorithm is found using the law of large numbers. This point

serves as a base line to compare the asymptotic performance of the system

under PFS scheduling.

• The PFS algorithm is written in a recursive form suitable for the application

of the theory of stochastic approximation. Using this theory, the equilibrium

point of the PFS scheduler is found and is identical to that of the greedy
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algorithm. Therefore, asymptotically in time, the PFS scheduling algorithm

converges to the performance of the greedy algorithm.

• The rate of convergence of the PFS algorithm to the equilibrium point is

found. This rate of convergence leverages the fact that for the i.i.d. chan-

nel model the noise term in the stochastic approximation formulation is a

martingale difference sequence.

• At any given finite time, the distance of the PFS algorithm from its conver-

gence point is a random variable. The distribution of this random variable is

known to be gaussian from the theory of stochastic approximation. Methods

to find the covariance matrix of this distance random variable are discussed

and explicitly found in several cases.

• A thresholding scheme is proposed to help reduce the total feedback load in

the system. It is shown that the implementation of the proposed threshold

does not affect the fact that the PFS algorithm converges to a unique equi-

librium. This unique equilibrium is identified and shown to differ from the

convergence point of the greedy algorithm. The difference is due to the fact

that compared to a system without a threshold, there will be some rate loss

due to the event where multi-user diversity is lost when no user exceeds the

threshold.



Appendix A

Uzgoren’s Theorem and a

Corollary of Sharif and Hassibi

Let x1, . . . , xn be a sequence of positive random variables with strictly

positive density function fX(x) on the positive real line and cdf FX(x). The growth

function gX(x) is defined to be

gX(x) =
1− FX(x)

fX(x)
. (A.1)

Also, define the variable un to be the unique solution to

1− FX (un) =
1

n
. (A.2)

With these definitions in hand, the theorem due to Uzgoren is restated.

Theorem 18. (Uzgoren, [Uzg]) Let x1, . . . , xn be a sequence of i.i.d. positive

random variables with continuous and strictly positive pdf fX(x) for x > 0 and cdf

of FX(x). Let also gX(x) be the growth function. Then if limx→∞ gX(x) = c > 0,

then

log {− logF n (un + ugX (un))} = −u− u2g′X (un)

2!
− · · · − umg

(m)
X (un)

m!
+

O

(
e−u+O(u2g′X(un))

n

)
.
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The distributions for the maximum SINR per beam and the optimal com-

bining SINR have support on the non-negative real line and have continuous cdfs

that do not attain the value of unity for any finite value of the support, which

implies the densities are strictly positive on the support. Thus, it must be shown

that limx→∞ gX(x) = c > 0. It is shown more generally that having an asymptotic

maximum order statistic distribution of type 3 implies this condition. Equation

(2.19) gives a condition for the asymptotic distribution of the maximum order

statistic to be of type 3, and it can be rewritten as

lim
x→∞

(
−1−

[
1− FX(x)

fX(x)

] [
f ′′X(x)

fX(x)

])
= lim

x→∞

(
−1− gX(x)

f ′′X(x)

fX(x)

)
= 0. (A.3)

It was shown that the distributions of interest satisfy this limit. Thus for the limit

to go to zero, we need limx→∞ gX(x)
f ′′X(x)

fX(x)
→ −1. Because 1−FX(x) and fX(x) are

non-negative for all x in the support of the distribution, limx→∞ gX(x) ≥ 0. From

basic properties of limits, it is also known that

lim
x→∞

gX(x)
f ′′X(x)

fX(x)
= lim

x→∞
gX(x) lim

x→∞

f ′′X(x)

fX(x)
= −1. (A.4)

Therefore, since the limit of the product is finite and non-zero, limx→∞ gX(x) =

c > 0, and the conditions of the theorem are satisfied.

Next, it must be shown that the following corollary shown in the appendix

of [SH05] holds.

Corollary 11. Let x1, . . . , xn be a sequence of i.i.d. positive random variables

with continuous and strictly positive pdf fX(x) for x > 0 and cdf of FX(x). If

un = O(log n), limx→∞ gX(x) = c > 0, and g
(m)
X (un) = O (1/umn ), then

Pr {un − c log log n ≤ maxxi ≤ un + c log log n} ≥ 1−O
(

1

log n

)
(A.5)

All the conditions of this corollary except for the derivative constraint were

previously shown to hold. Suppose that g
(1)
X (x) = Θ (1/x), where f(x) ∈ Θ(h(x))

means f is asymptotically bounded above and below by h, i.e. asymptotically
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|h(x)|k1 ≤ |f(x)| ≤ |h(x)|k2 for some k1, k2. Then by integration gX(x) = Θ(log x),

but limx→∞ log x → ∞, which contradicts limx→∞ gX(x) → c > 0, therefore

g
(1)
X (x) = o(1/x). This implies that g

(m)
X (x) = o(1/xm), and because o(f(x)) ⊂

O(f(x)), the derivative constraint of Corollary (11) is also met.



Appendix B

Post-Processing SINR

Distribution

The distribution of the SINR from Equation (2.22) turns out to be a

special case of the work in [GS98b], [GS98a]. In [GS98b], Gao and Smith let the

random variable Z denote the SINR at the output of the optimal combiner and

were interested in the link reliability

R(z) = Pr [Z ≥ z] . (B.1)

The quantity of interest in this paper is the cdf of Z as to utilize order statistics,

which is given by the quantity F (z) = 1 − R(z). Define E
[
Hiφjφ

∗
jH
∗
i

]
= PiI for

the ith user and jth transmit beam, and the noise covariance σ2I. Assume the

jth beam is the intended signal, then let γ = ρPi
σ2 and Γk = Pk

Pj
. For the additive

Gaussian noise channel where there are M−1 interferers for a given beam (i.e. the

other M − 1 beams), Equations (11) - (13) in [GS98b] define the function R(z):

R(z) = exp

(
−z
γ

) N∑
i=1

Ai(z)

(i− 1)!

(
z

γ

)i−1

(B.2)

where

Ai(z) =

 1, N ≥M + i
1+
∑N−i
j=1 Cjz

j∏M−1
k=1 (1+Γkz)

, N < M + i
. (B.3)

The coefficient Cj in Equation (B.3) is the coefficient of zj in
∏M−1

k=1 (1 + Γkz).

This set-up is more general than is needed. All the channels have the same
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statistics and all the signals have the same power. Therefore Γk = 1 for all k, and

the term
∏M−1

k=1 (1 + Γkz) becomes
∏M−1

k=1 (1 + z) = (1 + z)M−1, which is indepen-

dent of any index, and from the binomial theorem the coefficient Cj =

(
M − 1

j

)
.

Assuming M ≥ N implies Ai(z) never equals unity. These simplifications yield

Ai(z) =

1 +
∑N−i

j=1

(
M − 1

j

)
zj

(1 + z)M−1
(B.4)

and the cdf of the SINR after optimal combining yields the result of the theorem.



Appendix C

Sum-Rate Scaling with LMMSE

Reception

The distribution FMMSE(z) is of the form F (z) = 1−R(z), with R(z) given

by Equation (B.2). Combining this with the condition for the limiting distribution

to be of type 3, Equation (2.19), the limiting distribution is of type 3 if the following

limit is satisfied:

lim
z→∞

R(z) d2

dz2
R(z)(

d
dz
R(z)

)2 → 1. (C.1)

Similar to previous analysis, consider the terms that dominate the limit

and show that their limit goes to unity. First, expanding the expression for R(z)

yields

R(z) =
e−z/ρ

(1 + z)M−1

N∑
i=1

(
z
ρ

)i−1

(i− 1)!
+

e−z/ρ

(1 + z)M−1

N∑
i=1

N−i∑
j=1

(
M − 1

j

)
zj+i−1

ρi−1(i− 1)!
.

(C.2)

All the terms in R(z) decay to zero as z tends to infinity monotonically, so the

terms that decay to zero the slowest are of interest. Looking at the first term in

R(z), of all the terms in the sum, the one that decays the slowest is when zi has

the largest exponent, thus the dominating term in the limit is

e−z/ρzN−1

(1 + z)M−1ρN−1(N − 1)!
. (C.3)
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Analyzing the second term in R(z), the term that decays the slowest in the sum-

mation as z tends to infinity is when zj+i−1 has the largest exponent. The largest

value the index j in the exponent can take on is N − i, and substituting this

back into the expression yields zN−1 which is independent of the indices i and j.

Therefore, the dominating term is given by

e−z/ρzN−1

(1 + z)M−1

N∑
i=1

(
M − 1

N − i

)
1

ρi(i− 1)!
(C.4)

Combining Equations (C.3) and (C.4) gives the dominating terms of R(z) in the

limit
e−z/ρzN−1

(1 + z)M−1
C (C.5)

where the constant C is defined as

C =
1

ρN−1(N − 1)!
+

N∑
i=1

(
M − 1

N − i

)
1

ρi(i− 1)!
(C.6)

From Equation (C.1), the limiting terms of the first and second derivatives

of R(z) are needed, and luckily the dominating term of R(z) in Equation (C.5) is

readily differentiable. Performing some calculus and ignoring terms that decay too

fast, the limiting term of d
dz
R(z) is

−C e−z/ρzN−1

ρ(1 + z)N−1
, (C.7)

and the limiting term of d2

dz2
R(z) is

C
e−z/ρzN−1

ρ2(1 + z)M−1
. (C.8)

Combining Equations (C.5),(C.7), and (C.8) yields

lim
z→∞

R(z) d2

dz2
R(z)(

d
dz
R(z)

)2 =
C e−z/ρzN−1

(1+z)M−1 · C e−z/ρzN−1

ρ2(1+z)M−1(
−C e−z/ρzN−1

ρ(1+z)M−1

)2 = 1. (C.9)

Therefore the limiting distribution of the maximal order statistic for the SINR

after optimal combining is of type 3.



137

If the scaling rate of the unique solution to 1 − FMMSE(un) = 1
n

can be

found, then the asymptotic scaling rate is known by Equation (15) of [MPP08]

lim
n→∞

R

M log un
= 1 (C.10)

For sufficiently large n, 1−FMMSE is dominated by Equation (C.5). The solution un

to 1−FMMSE(un) = 1
n

is guaranteed to exist since Equation (C.5) is monotonically

decreasing and continuous. Following the analysis of Equation (21) in [SH05],

1− FMMSE(un) =
e−un/ρuN−1

n

(1 + un)M−1
C =

1

n

⇒ un
ρ

+ (M − 1) log(1 + un)− (N − 1) log(un)

= log n− logC.

For fixed N,Mandρ and sufficiently large n, this yields

un = ρ log n+ ρ(M −N) log log n+O(log log log n)

since logC becomes inconsequential, un is monotonically increasing, and

lim
n→∞

(log(1 + un)− log un) = 0.

Thus, the desired scaling rate is achieved.
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